Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Halide perovskite thin films can be the centerpiece of high-performance solar cells, light-emitting diodes, and other optoelectronic devices if the films are of high uniformity and relatively free of pinholes and other defects. A common strategy to form dense films from solution has been to generate a high density of nuclei by rapidly increasing supersaturation, for example, by timely application of an antisolvent or forced convection. In this work, we examine the role of retrograde solubility, wherein solubility decreases with increasing temperature, as a means of increasing the nucleation density and film coverage of slot-die-coated methylammonium lead iodide (MAPbI) from γ-butyrolactone (GBL) solution. Coverage was investigated as a function of the substrate temperature and the presence and temperature of an air knife. Results were considered within the framework of the dimensionless modified Biot number, which quantifies the interplay between evaporation and horizontal diffusion. Moderate temperatures and a heated air knife improved film coverage and morphology by enhanced nucleation up to ∼80 °C. However, despite the dense nucleation enabled by retrograde solubility, slow evaporation as a result of the low vapor pressure of GBL, combined with Ostwald ripening at high temperatures, prevented the deposition of void-free, device-quality films. This work has provided a more detailed understanding of the interplay between perovskite processing, solvent parameters, and film morphology and ultimately indicates the obstacles to forming dense, uniform films from solvents with high boiling points even in the presence of rapid nucleation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197085 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.3c03979 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!