A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Smart Biointerfaces via Click Chemistry-Enabled Nanopatterning of Multiple Bioligands and DNA Force Sensors. | LitMetric

Smart Biointerfaces via Click Chemistry-Enabled Nanopatterning of Multiple Bioligands and DNA Force Sensors.

ACS Appl Mater Interfaces

Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000Aarhus C, Denmark.

Published: May 2024

Nanoscale biomolecular placement is crucial for advancing cellular signaling, sensor technology, and molecular interaction studies. Despite this, current methods fall short in enabling large-area nanopatterning of multiple biomolecules while minimizing nonspecific interactions. Using bioorthogonal tags at a submicron scale, we introduce a novel hole-mask colloidal lithography method for arranging up to three distinct proteins, DNA, or peptides on large, fully passivated surfaces. The surfaces are compatible with single-molecule fluorescence microscopy and microplate formats, facilitating versatile applications in cellular and single-molecule assays. We utilize fully passivated and transparent substrates devoid of metals and nanotopographical features to ensure accurate patterning and minimize nonspecific interactions. Surface patterning is achieved using bioorthogonal TCO-tetrazine (inverse electron-demand Diels-Alder, IEDDA) ligation, DBCO-azide (strain-promoted azide-alkyne cycloaddition, SPAAC) click chemistry, and biotin-avidin interactions. These are arranged on surfaces passivated with dense poly(ethylene glycol) PEG brushes crafted through the selective and stepwise removal of sacrificial metallic and polymeric layers, enabling the directed attachment of biospecific tags with nanometric precision. In a proof-of-concept experiment, DNA tension gauge tether (TGT) force sensors, conjugated to cRGD (arginylglycylaspartic acid) in nanoclusters, measured fibroblast integrin tension. This novel application enables the quantification of forces in the piconewton range, which is restricted within the nanopatterned clusters. A second demonstration of the platform to study integrin and epidermal growth factor (EGF) proximal signaling reveals clear mechanotransduction and changes in the cellular morphology. The findings illustrate the platform's potential as a powerful tool for probing complex biochemical pathways involving several molecules arranged with nanometer precision and cellular interactions at the nanoscale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073048PMC
http://dx.doi.org/10.1021/acsami.4c00831DOI Listing

Publication Analysis

Top Keywords

nanopatterning multiple
8
force sensors
8
nonspecific interactions
8
fully passivated
8
smart biointerfaces
4
biointerfaces click
4
click chemistry-enabled
4
chemistry-enabled nanopatterning
4
multiple bioligands
4
bioligands dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!