Tackling Energy Loss in Organic Solar Cells via Volatile Solid Additive Strategy.

Adv Sci (Weinh)

Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.

Published: July 2024

The energy loss induced open-circuit voltage (V) deficit hampers the rapid development of state-of-the-art organic solar cells (OSCs), therefore, it is extremely urgent to explore effective strategies to address this issue. Herein, a new volatile solid additive 1,4-bis(iodomethyl)cyclohexane (DIMCH) featured with concentrated electrostatic potential distribution is utilized to act as a morphology-directing guest to reduce energy loss in multiple state-of-art blend system, leading to one of highest efficiency (18.8%) at the forefront of reported binary OSCs. Volatile DIMCH decreases radiative/non-radiative recombination induced energy loss (ΔE/ΔE) by rationally balancing the crystallinity of donors and acceptors and realizing homogeneous network structure of crystal domain with reduced D-A phase separation during the film formation process and weakens energy disorder and trap density in OSCs. It is believed that this study brings not only a profound understanding of emerging volatile solid additives but also a new hope to further reduce energy loss and improve the performance of OSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220641PMC
http://dx.doi.org/10.1002/advs.202401330DOI Listing

Publication Analysis

Top Keywords

energy loss
20
volatile solid
12
organic solar
8
solar cells
8
solid additive
8
reduce energy
8
loss
5
energy
5
tackling energy
4
loss organic
4

Similar Publications

Stabilizing Lattice Oxygen of Bi2O3 by Interstitial Insertion of Indium for Efficient Formic Acid Electrosynthesis.

Angew Chem Int Ed Engl

January 2025

University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.

Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.

View Article and Find Full Text PDF

Hypertension, a major cause of cardiomyopathy, is one of the most critical risk factors for heart failure and mortality worldwide. Loss of metabolic flexibility of cardiomyocytes is one of the major causes of heart failure. Although Catestatin (CST) treatment is known to be both hypotensive and cardioprotective, its effect on cardiac metabolism is unknown.

View Article and Find Full Text PDF

Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes.

View Article and Find Full Text PDF

Modification and deterioration of old-growth forests by industrial forestry have seriously threatened species diversity worldwide. The loss of natural habitats increases the concentration of circulating glucocorticoids and incurs chronic stress in animals, influencing the immune system, growth, survival, and lifespan of animals inhabiting such areas. In this study, we tested whether great tit () nestlings grown in old-growth unmanaged coniferous forests have longer telomeres than great tit nestlings developing in young managed coniferous forests.

View Article and Find Full Text PDF

Typical renal involvement of antineutrophilic cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is pauci-immune glomerulonephritis that presents clinically as rapidly progressive renal failure (RPRF). Here, we report an unusual presentation of myeloperoxidase (MPO)-specific ANCA with isolated involvement of the tubulointerstitium in the form of peritubular capillaritis as the sole lesion without any involvement of the glomerulus. A 52-year-old woman with no previous comorbidities presented with nonspecific symptoms such as fatigue, dysuria, and nausea for two months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!