Hypoxia is a state characterized by low concentration of Oxygen. Hypoxic state is often found in the central region of solid tumors. Hypoxia is associated with abnormal neovascularization resulted in poor blood flow in tissues and increased proliferation of tumor cells, imbalance between O supply and O consumption in tumor cells, high concentration of proton and strong reducibility. And, these abnormalities enhance the survival potency of the hypoxic tumours and increase the resistance towards chemotherapy and radiotherapy. One of the approach for treating hypoxic region of tumour is to use reducing environment of hypoxic tumours for reducing a molecule (hypoxia activated prodrug, HAP) and as a result the active drug will be released in hypoxic region in a controlled manner from the prodrug and kill the hypoxic tumour. Co(III) and Pt(IV) complexes with monodentate active drug molecule in the axial position can be reduced to Co(II) and Pt(II) moieties and as a result, the axial ligands (active drug) could come out from the metal center and could show its anticancer activity. In this review we have highlighted the research articles where transition metal-based complexes are used as chemotherapeutic hypoxia activated prodrug molecules which are reported in last 5 years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.202400127 | DOI Listing |
BMC Med
January 2025
Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China.
Background: Obstructive sleep apnea (OSA) is linked to brain alterations, but the specific regions affected and the causal associations between these changes remain unclear.
Methods: We studied 20 pairs of age-, sex-, BMI-, and education- matched OSA patients and healthy controls using multimodal magnetic resonance imaging (MRI) from August 2019 to February 2020. Additionally, large-scale Mendelian randomization analyses were performed using genome-wide association study (GWAS) data on OSA and 3935 brain imaging-derived phenotypes (IDPs), assessed in up to 33,224 individuals between December 2023 and March 2024, to explore potential genetic causality between OSA and alterations in whole brain structure and function.
Biochemistry (Mosc)
December 2024
Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russia.
Human carbonic anhydrase IX (CAIX) plays a key role in maintaining pH homeostasis of malignant neoplasms, thus creating a favorable microenvironment for the growth, invasion, and metastasis of tumor cells. Recent studies have established that inhibition of CAIX expressed on the surface of tumor cells significantly increases the efficacy of classical chemotherapeutic agents and makes it possible to suppress the resistance of tumor cells to chemotherapy, as well as to increase their sensitivity to drugs (in particular, to reduce the required dose of cytostatic agents). In this work, we studied the ability of new CAIX inhibitors based on substituted 1,2,4-oxadiazole-containing primary aromatic sulfonamides, to potentiate the cytostatic effect of gefitinib (selective inhibitor of epidermal growth factor receptor tyrosine kinase domain) under hypoxic conditions.
View Article and Find Full Text PDFVitam Horm
January 2025
Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.
The hypothalamus is the gray matter of the ventral portion of the diencephalon. The hypothalamus is the higher center of the autonomic nervous system and is involved in the regulation of various homeostatic mechanisms. It also modulates respiration by facilitating the respiratory network.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India; Inter-University Centre for Evolutionary and Integrative Biology-iCEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India; Sastrajeevan Integrative Project, Centre for Integrative Stress and Ease-cRISE, Gregorian College of Advanced Studies, Sreekariyam, Thiruvananthapuram 695017, Kerala, India. Electronic address:
The cardiac actin cytoskeleton has a dynamic pattern of polymerisation. It is uncertain how far actin destabilisation impacts mitochondrial energetics and biogenesis, cell signal status, and structural entities in cardiomyocytes, particularly in hypoxic conditions. We thus tested the in vitro action of cytochalasin D (Cyt D), an inhibitor of actin polymerisation, in hypoxic ventricular explants to elucidate the role of the actin in mitochondrial energetics and biogenesis, cell signals and actin/tubulin/hsps/MMPs dynamics in hypoxic air-breathing fish hearts.
View Article and Find Full Text PDFInt J Cardiol
January 2025
Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province 510630, China. Electronic address:
Background: Identifying factors mediating adipose-derived stem cells (ADSCs)-induced endothelial cell angiogenesis in hypoxic skin flap tissue is critical for reconstruction. While the paracrine action of VEGF by adipose-derived stem cells (ADSCs) is established in promoting endothelial cell angiogenesis, the role of FGF2 and its regulatory mechanisms in ADSCs paracrine secretion remains unclear.
Methods: We induced hypoxia and examined the expression level of FGF2 in ADSCs using ELISA, qRT-PCR, and western blotting.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!