Flow sensing exhibits significant potential for monitoring, controlling, and optimizing processes in industries, resource management, and environmental protection. However, achieving wireless real-time and omnidirectional sensing of gas/liquid flow on a simple, self-contained device without external power support has remained a formidable challenge. In this study, a compact-sized, fully self-powered wireless sensing flowmeter (CSWF) is introduced with a small size diameter of down to less than 50 mm, which can transmit real-time and omnidirectional wireless signals, as driven by a rotating triboelectric nanogenerator (R-TENG). The R-TENG triggers the breakdown discharge of a gas discharge tube (GDT), which enables flow rate wireless sensing through emitted electromagnetic waves. Importantly, the performance of the CSWF is not affected by the R-TENG's varied output, while the transmission distance is greater than 10 m. Real-time wireless remote monitoring of wind speed and water flow rate is successfully demonstrated. This research introduces an approach to achieve a wireless, self-powered environmental monitoring system with a diverse range of potential applications, including prolonged meteorological observations, marine environment monitoring, early warning systems for natural disasters, and remote ecosystem monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202301670DOI Listing

Publication Analysis

Top Keywords

compact-sized fully
8
fully self-powered
8
self-powered wireless
8
real-time omnidirectional
8
wireless sensing
8
flow rate
8
wireless
7
monitoring
5
wireless flowmeter
4
flowmeter based
4

Similar Publications

Flow sensing exhibits significant potential for monitoring, controlling, and optimizing processes in industries, resource management, and environmental protection. However, achieving wireless real-time and omnidirectional sensing of gas/liquid flow on a simple, self-contained device without external power support has remained a formidable challenge. In this study, a compact-sized, fully self-powered wireless sensing flowmeter (CSWF) is introduced with a small size diameter of down to less than 50 mm, which can transmit real-time and omnidirectional wireless signals, as driven by a rotating triboelectric nanogenerator (R-TENG).

View Article and Find Full Text PDF

Giant Magnetoresistance Biosensors for Food Safety Applications.

Sensors (Basel)

July 2022

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.

Nowadays, the increasing number of foodborne disease outbreaks around the globe has aroused the wide attention of the food industry and regulators. During food production, processing, storage, and transportation, microorganisms may grow and secrete toxins as well as other harmful substances. These kinds of food contamination from microbiological and chemical sources can seriously endanger human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!