Osmotic dehydration (OD) is an efficient preservation technology in that water is removed by immersing the food in a solution with a higher concentration of solutes. The application of OD in food processing offers more benefits than conventional drying technologies. Notably, OD can effectively remove a significant amount of water without a phase change, which reduces the energy demand associated with latent heat and high temperatures. A specific feature of OD is its ability to introduce solutes from the hypertonic solution into the food matrix, thereby influencing the attributes of the final product. This review comprehensively discusses the fundamental principles governing OD, emphasizing the role of chemical potential differences as the driving force behind the molecular diffusion occurring between the food and the osmotic solution. The kinetics of OD are described using mathematical models and the Biot number. The critical factors essential for optimizing OD efficiency are discussed, including product characteristics, osmotic solution properties, and process conditions. In addition, several promising technologies are introduced to enhance OD performance, such as coating, skin treatments, freeze-thawing, ultrasound, high hydrostatic pressure, centrifugation, and pulsed electric field. Reusing osmotic solutions to produce innovative products offers an opportunity to reduce food wastes. This review explores the prospects of valorizing food wastes from various food industries when formulating osmotic solutions for enhancing the quality and nutritional value of osmotically dehydrated foods while mitigating environmental impacts.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1541-4337.13346DOI Listing

Publication Analysis

Top Keywords

osmotic dehydration
8
promising technologies
8
food
8
food industries
8
osmotic solution
8
osmotic solutions
8
food wastes
8
osmotic
5
review osmotic
4
dehydration promising
4

Similar Publications

Detecting changes of testicular interstitial cell membranes with a fluorescent probe after incubation and cryopreservation with cryoprotective agents.

Cryobiology

January 2025

The National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova st, 61000 Kharkiv, Ukraine; Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 6 Trinklera st, 61022 Kharkiv, Ukraine. Electronic address:

Membrane alterations are among central factors predetermining cell survival during cryopreservation. In the present research, we tested some serum-/xeno-free cryoprotective compositions including dimethyl sulfoxide (MeSO) and polymers for their osmotic impact and toxicity towards testicular interstitial cells (ICs). IC survival was determined after their contact with MeSO, dextran (D40), hydroxyethyl starch (HES), polyethylene glycols (PEG1500 and PEG400), or after cryopreservation and cryoprotective agent (CPA) removal.

View Article and Find Full Text PDF

Effect of osmotic dehydration with binary/ternary sugar solutes on macro-& micro-structure, chromaticity and thermal stability of dehydrated peach slices prepared by heat pump drying.

Food Chem

December 2024

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China. Electronic address:

The binary solution (sucrose/erythritol solution) and ternary solution (compound sucrose/erythritol with maltitol/fructooligosaccharide) were prepared as osmotic dehydration (OD) pretreatment before hot-pump-dried (HPD). Based on the analysis of OD solutions, the analysis of quality of dehydrated yellow peach slices (DYPS) were emphasized on the soluble sugar content, macro-µ-structure and thermal stability. Following with sucrose and maltitol (SM)-OD pretreatment, DYPS showed the decreased free sugar content and improved cohesiveness (0.

View Article and Find Full Text PDF

The present work aimed to evaluate the effectiveness of erythritol as an osmotic agent in the osmotic dehydration (OD) process of Japanese quince fruits and to assess its effects on their physicochemical and antioxidant properties. The efficiency of the OD process was determined by examining its kinetics and comparing the results to those from a sucrose solution. In selected osmotically dehydrated fruits, the following parameters were determined: dry matter content, total acidity, pH, sugar profile, color parameters, total phenolic and flavonoid content, antioxidant activity (DPPH and ABTS assays), and vitamin C content.

View Article and Find Full Text PDF

The Effect of Osmotic Dehydration Conditions on the Potassium Content in Beetroot ( L.).

Molecules

November 2024

Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.

Osmotic dehydration as a process of removing water from food by immersing the raw material in a hypertonic solution is used primarily to extend the shelf life of products and as a pretreatment before further processing steps, such as drying and freezing. However, due to the bi-directional mass transfer that occurs during osmotic dehydration, the process can also be used to shape sensory properties and enrich the plant matrix with nutrients. The purpose of this study was to evaluate the effect of osmotic dehydration on the absorption of potassium by beet pulp immersed in various hypertonic solutions (sucrose, inulin, erythritol, xylitol solutions) with the addition of three chemical forms of potassium (gluconate, citrate, chloride) using variable process conditions.

View Article and Find Full Text PDF

We report a new application of the recently developed technique, Optical Coherence Elastography (OCE) to quantitatively visualize kinetics of osmotic strains due to diffusive penetration of various osmotically active solutions into biological tissues. The magnitude of osmotic strains may range from fractions of one per cent to tens per cent. The visualized spatio-tempotal dynamics of the strains reflect the rates of osmotic dehydration and diffusional penetration of the active solute, which can be controlled by concentration of the solution components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!