UBE2C is overexpressed in gliomas, and its overexpression has been reported to be correlated with the drug resistance of gliomas to some extent. In this study, we explore the role of UBE2C in regulating temozolomide (TMZ) resistance in glioma and investigate the underlying mechanisms involved. Twenty normal brain tissues and 100 glioma tissues from 50 TMZ-resistant patients and 50 TMZ-sensitive patients are included in this study. TMZ-resistant cell lines are constructed to explore the role of UBE2C in regulating glioma cell viability and TMZ resistance. Our results show that both the mRNA and protein levels of UBE2C are significantly elevated in the brain tissues of glioma patients, especially in those of TMZ-resistant patients. Consistently, UBE2C expression is markedly upregulated in TMZ-resistant cell lines. Overexpression of UBE2C rescues glioma cells from TMZ-mediated apoptosis and enhances cell viability. In contrast, downregulation of UBE2C expression further enhances TMZ function, increases cell apoptosis and decreases cell viability. Mechanistically, UBE2C overexpression decreases p53 expression and enhances aerobic glycolysis level by increasing ATP level, lactate production, and glucose uptake. Downregulation of p53 level abolishes the role of UBE2C downregulation in inhibiting TMZ resistance and aerobic glycolysis in glioma cells. Moreover, an animal assay confirms that downregulation of UBE2C expression further suppresses tumor growth in the context of TMZ treatment. Collectively, this study reveals that downregulation of UBE2C expression enhances the sensitivity of glioma cells to TMZ by regulating the expression of p53 to inhibit aerobic glycolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214954PMC
http://dx.doi.org/10.3724/abbs.2024033DOI Listing

Publication Analysis

Top Keywords

aerobic glycolysis
16
ube2c expression
16
ube2c
12
role ube2c
12
tmz resistance
12
cell viability
12
glioma cells
12
downregulation ube2c
12
expression enhances
12
regulating expression
8

Similar Publications

Cancer is caused by complex interactions between genetic, environmental, and lifestyle factors, making prevention strategies, including exercise, a promising avenue for intervention. Physical activity is associated with reduced cancer incidence and progression and systemic anti-cancer effects, including improved tumor suppression and prolonged survival in preclinical models. Exercise impacts the body's nutrient balance and stimulates the release of several exercise-induced factors into circulation.

View Article and Find Full Text PDF

Timing of exercise differentially impacts adipose tissue gain in male adolescent rats.

Mol Metab

January 2025

Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain; Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, Spain. Electronic address:

Circadian rhythms of metabolic, hormonal, and behavioral fluctuations and their alterations can impact health. An important gap in knowledge in the field is whether the time of the day of exercise and the age of onset of exercise exert distinct effects at the level of whole-body adipose tissue and body composition. The goal of the present study was to determine how exercise at different times of the day during adolescence impacts the adipose tissue transcriptome and content in a rodent model.

View Article and Find Full Text PDF

Macrophage infiltration and activation is a key factor in the progression of diabetic nephropathy (DN). However, aerobic glycolysis induced by m6A methylation modification plays a key role in M1-type activation of macrophages, but the specific mechanism remains unclear in DN. In this study, the expression of m6A demethylase Fto in bone marrow derived macrophages and primary kidney macrophages from db/db mice.

View Article and Find Full Text PDF

Unlabelled: The rapid growth that occurs during larval development requires a dramatic rewiring of central carbon metabolism to support biosynthesis. Larvae achieve this metabolic state, in part, by coordinately up-regulating the expression of genes involved in carbohydrate metabolism. The resulting metabolic program exhibits hallmark characteristics of aerobic glycolysis and establishes a physiological state that supports growth.

View Article and Find Full Text PDF

piR-26441 inhibits mitochondrial oxidative phosphorylation and tumorigenesis in ovarian cancer through m6A modification by interacting with YTHDC1.

Cell Death Dis

January 2025

Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Ovarian cancer (OC) is a heterogeneous cancer. In contrast to other tumor cells, which rely primarily on aerobic glycolysis (Warburg effect) as their energy source, oxidative phosphorylation (OXPHOS) is also one of its major metabolic modes. Piwi-interacting RNAs (piRNAs) play a regulatory function in various biological processes in tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!