Exploring the impact of pathogenic microbiome in orthopedic diseases: machine learning and deep learning approaches.

Front Cell Infect Microbiol

Department of Joint and Sports Medicine, Zaozhuang Municipal Hospital, Affiliated to Jining Medical University, Zaozhuang, China.

Published: April 2024

Osteoporosis, arthritis, and fractures are examples of orthopedic illnesses that not only significantly impair patients' quality of life but also complicate and raise the expense of therapy. It has been discovered in recent years that the pathophysiology of orthopedic disorders is significantly influenced by the microbiota. By employing machine learning and deep learning techniques to conduct a thorough analysis of the disease-causing microbiome, we can enhance our comprehension of the pathophysiology of many illnesses and expedite the creation of novel treatment approaches. Today's science is undergoing a revolution because to the introduction of machine learning and deep learning technologies, and the field of biomedical research is no exception. The genesis, course, and management of orthopedic disorders are significantly influenced by pathogenic microbes. Orthopedic infection diagnosis and treatment are made more difficult by the lengthy and imprecise nature of traditional microbial detection and characterization techniques. These cutting-edge analytical techniques are offering previously unheard-of insights into the intricate relationships between orthopedic health and pathogenic microbes, opening up previously unimaginable possibilities for illness diagnosis, treatment, and prevention. The goal of biomedical research has always been to improve diagnostic and treatment methods while also gaining a deeper knowledge of the processes behind the onset and development of disease. Although traditional biomedical research methodologies have demonstrated certain limits throughout time, they nevertheless rely heavily on experimental data and expertise. This is the area in which deep learning and machine learning approaches excel. The advancements in machine learning (ML) and deep learning (DL) methodologies have enabled us to examine vast quantities of data and unveil intricate connections between microorganisms and orthopedic disorders. The importance of ML and DL in detecting, categorizing, and forecasting harmful microorganisms in orthopedic infectious illnesses is reviewed in this work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021578PMC
http://dx.doi.org/10.3389/fcimb.2024.1380136DOI Listing

Publication Analysis

Top Keywords

machine learning
20
deep learning
20
learning deep
16
orthopedic disorders
12
learning
10
orthopedic
8
learning approaches
8
disorders influenced
8
pathogenic microbes
8
diagnosis treatment
8

Similar Publications

IntroductionAsthma attacks are set off by triggers such as pollutants from the environment, respiratory viruses, physical activity and allergens. The aim of this research is to create a machine learning model using data from mobile health technology to predict and appropriately warn a patient to avoid such triggers.MethodsLightweight machine learning models, XGBoost, Random Forest, and LightGBM were trained and tested on cleaned asthma data with a 70-30 train-test split.

View Article and Find Full Text PDF

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.

View Article and Find Full Text PDF

A planktonic population of bacteria can form a biofilm by adhesion and colonization. Proteins known as "adhesins" can bind to certain environmental structures, such as sugars, which will cause the bacteria to attach to the substrate. Quorum sensing is used to establish the population is dense enough to form a biofilm.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe. DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death. Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles, programmed cell death, and circadian rhythm impairments.

View Article and Find Full Text PDF

Purpose: The incidence of cancer, which is a serious public health concern, is increasing. A predictive analysis driven by machine learning was integrated with haematology parameters to create a method for the simultaneous diagnosis of several malignancies at different stages.

Patients And Methods: We analysed a newly collected dataset from various hospitals in Jordan comprising 19,537 laboratory reports (6,280 cancer and 13,257 noncancer cases).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!