Photocatalysis is a promising treatment method to remove pollutants from water. TiO-P25 is a commercially available model photocatalyst, which very efficiently degrades organic pollutants under UVA light exposure. However, the collection and the recovery of TiO-P25 from cleaned water poses significant difficulties, severely limiting its usability. To address this challenge, we have prepared a sintered mixture of TiO-P25 nanomaterials and magnetic CuFeO-FeO nanocomposites. The mixture material was shown to contain spinel ferrite, hematite and maghemite structures, copper predominantly in Cu and iron predominantly in Fe state. The CuFeO-FeO and TiO-P25 mixture demonstrated magnetic collectability from processed water and photocatalytic activity, which was evidenced through the successful photodegradation of the herbicide 2,4-D. Our findings suggest that the sintered mixture of CuFeO-FeO and TiO-P25 holds a promise for improving photocatalytic water treatment, with the potential to overcome current photocatalyst recovery issues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019945 | PMC |
http://dx.doi.org/10.1039/d4ra00094c | DOI Listing |
J Nat Prod
January 2025
Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States.
To date, quantitative analysis of proanthocyanidin (PAC) containing materials including plant extracts and fractions depends on colorimetric assays or phloroglucinolysis/thiolysis combined with UV-HPLC analysis. Such assays are of limited accuracy, particularly lack specificity, require extensive sample preparation and degradation, and need appropriate physical reference standards. To address this analytical challenge and toward our broader goal of developing new plant-sourced biomaterials that chemically and mechanically modulate the properties of dental tissue for clinical interventions, we have characterized 12 different PAC DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) materials.
View Article and Find Full Text PDFAnal Methods
January 2025
Istanbul University, Faculty of Pharmacy, Department of Analytical Chemistry, 34116, Istanbul, Turkey.
In this study, a new reversed phase high performance liquid chromatography method using two detectors was developed for the analysis of degradation and process impurities of ivabradine in pharmaceutical preparations. A PDA detector set to 285 nm wavelength and a QDa detector set to positive scan mode were used in the method. In the developed method, the separation process was carried out in a Zorbax phenyl column with a gradient application of a 0.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
When dielectrics are hit with intense infrared (IR) laser pulses, transient metalization can occur. The initial attosecond dynamics behind this metallization are not entirely understood. Therefore, simulations are needed to understand this process and to help interpret experimental observations of it, such as with attosecond transient absorption (ATA).
View Article and Find Full Text PDFChem Biodivers
December 2024
Department of Biochemistry, Government College Women University, Faisalabad, Pakistan.
The current study was conducted to characterize the vinegar extract of Nigella sativa and evaluate its biological activities using in vitro and in vivo studies. The N. sativa extract (NSE) was prepared by macerating seeds in a mixture of water and synthetic vinegar (1:10).
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
In this article, a neoacetalization-based method for post-SELEX modification of aptamers is introduced. Three modified quinine binding aptamer scaffolds were synthesized by replacing three different nucleosides of the binding site with a (2,3)-4-(methoxyamino)butane-1,2,3-triol residue. These aptamer scaffolds were incubated in different aldehyde mixtures with and without quinine, allowing the reversible formation of -methoxy-1,3-oxazinane (MOANA) nucleoside analogues through dynamic combinatorial chemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!