Background And Purposes: Data on the carbon footprint of external beam radiotherapy (EBRT) are scarce. Reliable and exhaustive data, including a detailed carbon inventory, are needed to determine effective mitigation strategies.
Materials And Methods: This study proposes a methodology for calculating the carbon footprint of EBRT and applies it to a single center. Mitigation strategies are derived from the carbon inventory, and their potential reductions are quantified whenever possible.
Results: The average emission per treatment and fraction delivered was 489 kg CO₂eq and 27 kg CO₂eq, respectively. Patient transportation (43 %) and the construction and maintenance of linear accelerators (LINACs) and scanners (17 %) represented the most significant components. Electricity, the only energy source used, accounted for only 2 % of emissions.Derived mitigation strategies include a data deletion policy (reducing emissions in 30 years by 12.5 %), geographical appropriateness (-12.2 %), transportation mode appropriateness (-9.3 %), hypofractionation (-5.9 %), decrease in manufacturers' carbon footprint (-5.2 %), and an increase in machine durability (-3.5 %).
Conclusion: Our findings indicate that a significant reduction in the carbon footprint of a radiotherapy unit can be achieved without compromising the quality of care.This study provides a methodology and a starting point for comparison and proposes and quantifies mitigation strategies, paving the way for others to follow.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021844 | PMC |
http://dx.doi.org/10.1016/j.ctro.2024.100768 | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.
Light-driven CO biovalorization offers a promising route for coupling carbon mitigation with petrochemical replacement. Synthetic phototrophic communities that mimic lichens can reduce the metabolic burden with improved CO utilization. However, inefficient channeling of carbon and energy between species seriously hinders the collaborative CO-to-molecule route.
View Article and Find Full Text PDFPlant J
January 2025
Systems Biotechnology Group, Department Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany.
Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process.
View Article and Find Full Text PDFHeliyon
January 2025
Research Center, Future University in Egypt, New Cairo, 11835, Egypt.
Climate change impacts the demand of the construction industry to reduce its carbon footprint while increasing the resilience of the buildings. This twofold need emphasises better understanding and cost prediction of green resilient buildings based on their 'resilience' and 'sustainability', which is very limited or based on obsolete perceptions and stereotypes. This study presents a novel index to predict the cost of converting a conventional building to a green-resilient building.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Catalysis, Zhejiang University, Hangzhou 310027, China.
Selective coupling of C platform molecules to C olefins is a cornerstone for establishing a sustainable chemical industry based on nonpetroleum sources. Vinyl chloride (CHCl), one of the top commodity petrochemicals, is commercially produced from coal- or oil-derived C hydrocarbon (acetylene and ethylene) feedstocks with a high carbon footprint. Here, we report a C-based route for vinyl chloride synthesis via the selective oxidative coupling of methyl chloride.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Business Administration, King Saud University, Saudi Arabia. Electronic address:
In the era of economic globalization, China attracts significant foreign direct investment (FDI) to accelerate economic prosperity. FDI inflows could have ramifications on environmental degradation (ED) despite the enactment of different environmental regulations (ERs) such as market-incentive, command-and-control as well as informal regulations. Though some studies have shown that FDI and ED have significant relationship, the moderating roles of different ERs on the environmental impact of FDI has not been empirically unraveled.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!