A limiting factor for solid polymer electrolyte (SPE)-based Li-batteries is the functionality of the electrolyte decomposition layer that is spontaneously formed at the Li metal anode. A deeper understanding of this layer will facilitate its improvement. This study investigates three SPEs - polyethylene oxide:lithium tetrafluoroborate (PEO:LiBF), polyethylene oxide:lithium bis(oxalate)borate (PEO:LiBOB), and polyethylene oxide:lithium difluoro(oxalato)borate (PEO:LiDFOB) - using a combination of electrochemical impedance spectroscopy (EIS), galvanostatic cycling, Li deposition photoelectron spectroscopy (PES), and molecular dynamics (AIMD) simulations. Through this combination, the cell performance of PEO:LiDFOB can be connected to the initial SPE decomposition at the anode interface. It is found that PEO:LiDFOB had the highest capacity retention, which is correlated to having the least decomposition at the interface. This indicates that the lower SPE decomposition at the interface still creates a more effective decomposition layer, which is capable of preventing further electrolyte decomposition. Moreover, the PES results indicate formation of polyethylene in the SEI in cells based on PEO electrolytes. This is supported by AIMD that shows a polyethylene formation pathway through free-radical polymerization of ethylene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019830PMC
http://dx.doi.org/10.1039/d3ta07175hDOI Listing

Publication Analysis

Top Keywords

polyethylene oxidelithium
12
peo electrolytes
8
electrolyte decomposition
8
decomposition layer
8
spe decomposition
8
decomposition interface
8
decomposition
6
polyethylene
5
initial sei
4
sei formation
4

Similar Publications

The lignin derived ultrathin all-solid composite polymer electrolyte (CPE) with a thickness of only 13.2 µm, which possess 3D nanofiber ionic bridge networks composed of single-ion lignin-based lithium salt (L-Li) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the framework, and poly(ethylene oxide)/lithium bis(trifluoromethanesulfonyl)imide (PEO/LiTFSI) as the filler, is obtained through electrospinning/spraying and hot-pressing. t.

View Article and Find Full Text PDF

Correlation between Ionic Conductivity and Mechanical Properties of Solid-like PEO-based Polymer Electrolyte.

ACS Appl Mater Interfaces

March 2024

Sorbonne Université́, CNRS, Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, 4 Place Jussieu, 75005 Paris, France.

Poly(ethylene glycol) methyl ether methacrylate polymer networks (PEO-based networks), with or without anionic bis(trifluoromethanesulfonyl)imide (TFSI)-grafted groups, are promising electrolytes for Li-metal all solid-state batteries. Nevertheless, there is a need to enhance our current understanding of the physicochemical characteristics of these polymer networks to meet the mechanical and ionic conductivity property requirements for Li battery electrolyte materials. To address this challenge, our goal is to investigate the impact of the cross-linking density of the PEO-based network and the ethylene oxide/lithium ratio on mechanical properties (such as glass transition temperature and storage modulus) and ionic conductivity.

View Article and Find Full Text PDF

Bruce-Vincent transference numbers from molecular dynamics simulations.

J Chem Phys

April 2023

Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, P. O. Box 538, 75121 Uppsala, Sweden.

Transference number is a key design parameter for electrolyte materials used in electrochemical energy storage systems. However, the determination of the true transference number from experiments is rather demanding. On the other hand, the Bruce-Vincent method is widely used in the lab to approximately measure transference numbers of polymer electrolytes, which becomes exact in the limit of infinite dilution.

View Article and Find Full Text PDF

In lithium-sulfur cells, the dissolution and relocation of the liquid-state active material (polysulfides) lead to fast capacity fading and low Coulombic efficiency, resulting in poor long-term electrochemical stability. To solve this problem, we synthesize a composite using a gel polymer electrolyte and a separator as a functional membrane, coated with a layer of poly(ethylene oxide) (PEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The PEO/LiTFSI-coated polypropylene membrane slows the diffusion of polysulfides and stabilizes the liquid-state active material within the cathode region of the cell, while allowing smooth lithium-ion transfer.

View Article and Find Full Text PDF

Constructing Li-Rich Artificial SEI Layer in Alloy-Polymer Composite Electrolyte to Achieve High Ionic Conductivity for All-Solid-State Lithium Metal Batteries.

Adv Mater

March 2021

Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.

To achieve high ionic conductivity for solid electrolyte, an artificial Li-rich interface layer of about 60 nm thick has been constructed in polymer-based poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide composite solid electrolyte (briefly noted as PEO ) by adding Li-based alloys. As revealed by high-resolution transmission electron microscopy and electron energy loss spectroscopy, an artificial interface layer of amorphous feature is created around the Li-based alloy particles with the gradient distribution of Li across it. Electrochemical analysis and theoretical modeling demonstrate that the interface layer provides fast ion transport path and plays a key role in achieving high and stable ionic conductivity for PEO -Li Si composite solid electrolyte.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!