AI Article Synopsis

  • Metal-organic frameworks (MOFs) are being enhanced by combining them with conductive polymers to create better gas sensors, overcoming their limitation of single-use detection.
  • This hybridization results in improved sensor performance, including faster recovery times, greater stability over multiple uses, and a wider range of detectable gas concentrations at room temperature.
  • A detailed study on the interaction between these materials provides insights into the fundamental mechanisms at play, which could lead to broader applications in electronics due to the compatibility of hybrid materials for device integration.

Article Abstract

Metal-organic frameworks (MOFs) are promising materials for gas sensing but are often limited to single-use detection. A hybridization strategy is demonstrated synergistically deploying conductive MOFs (cMOFs) and conductive polymers (cPs) as two complementary mixed ionic-electronic conductors in high-performing stand-alone chemiresistors. This work presents significant improvement in i) sensor recovery kinetics, ii) cycling stability, and iii) dynamic range at room temperature. The effect of hybridization across well-studied cMOFs is demonstrated based on 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 2,3,6,7,10,11-hexaiminotriphenylene (HITP) ligands with varied metal nodes (Co, Cu, Ni). A comprehensive mechanistic study is conducted to relate energy band alignments at the heterojunctions between the MOFs and the polymer with sensing thermodynamics and binding kinetics. The findings reveal that hole enrichment of the cMOF component upon hybridization leads to selective enhancement in desorption kinetics, enabling significantly improved sensor recovery at room temperature, and thus long-term response retention. This mechanism is further supported by density functional theory calculations on sorbate-analyte interactions. It is also found that alloying cPs and cMOFs enables facile thin film co-processing and device integration, potentially unlocking the use of these hybrid conductors in diverse electronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202312382DOI Listing

Publication Analysis

Top Keywords

sensor recovery
8
room temperature
8
robust chemiresistive
4
chemiresistive behavior
4
behavior conductive
4
conductive polymer/mof
4
polymer/mof composites
4
composites metal-organic
4
metal-organic frameworks
4
frameworks mofs
4

Similar Publications

Nanoencapsulated Optical Fiber-Based PEC Microelectrode: Highly Sensitive and Specific Detection of NT-proBNP and Its Implantable Performance.

Anal Chem

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.

View Article and Find Full Text PDF

High performance humidity sensor based on a graphene oxide-chitosan composite.

Phys Chem Chem Phys

January 2025

Temperature and Humidity Metrology, CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi, 110012, India.

In this study, we have proposed an advanced humidity sensor based on a composite of chitosan (CS) and graphene oxide (GO), prepared by the drop casting method. Graphene oxide-chitosan (GO-CS) films with varying volumetric ratios, along with pure GO and CS films, were prepared and extensively characterized using XRD, Raman, FTIR, SEM, XPS, and water contact angle to study their structural and morphological properties. Comparative analysis of humidity sensing parameters of all prepared films revealed that the film with a volumetric ratio of 4 : 1 (GOCS-2) performs best among all of them, which is attributed to the synergistic interaction between GO and CS.

View Article and Find Full Text PDF

Sensing of hazardous gases has an important role in ensuring safety in a variety of industries as well as environments. Mainly produced by the combustion of fossil fuels and other organic matter, ethanol is a dangerous gas that endangers human health and the environment. Stability and sensing sensitivity are major considerations when designing gas sensors.

View Article and Find Full Text PDF

The extensive use of tetracyclines in livestock poses health risks due to their residues in animal-derived food; therefore, developing simple detection methods to replace complex traditional approaches is of paramount importance. Here, we developed a dual-ligand zinc-based metal-organic framework material, Zn-BTC-BDC-NH (denoted as ZTD), for the detection of tetracyclines. The intrinsic blue fluorescence of ZTD was quenched upon the introduction of tetracyclines due to electron transfer from -NH of ZTD to -CO- and -OH groups of tetracycline molecules; meanwhile, the new green fluorescence emission was generated through π-π stacking between aromatic rings and the formation of complexes between Zn and C-O/C═O groups.

View Article and Find Full Text PDF

The inclusion of redox mediators into electrocatalytic systems facilitates rapid electron shuttling kinetics and boosts the overall catalytic performance of the electrode. This approach overcomes the sluggish reaction dynamics associated with direct electron transfer, which may be impeded by restricted analyte access to the electrode's active sites. In contrast to conventional synthetic redox mediators, naturally sourced phytomolecule rutin trihydrate (RT), extracted from apple juice, offers potential ecological advantages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!