Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In networked dynamical systems, inferring governing parameters is crucial for predicting nodal dynamics, such as gene expression levels, species abundance, or population density. While many parameter estimation techniques rely on time-series data, particularly systems that converge over extreme time ranges, only noisy steady-state data is available, requiring a new approach to infer dynamical parameters from noisy observations of steady states. However, the traditional optimization process is computationally demanding, requiring repeated simulation of coupled ordinary differential equations. To overcome these limitations, we introduce a surrogate objective function that leverages decoupled equations to compute steady states, significantly reducing computational complexity. Furthermore, by optimizing the surrogate objective function, we obtain steady states that more accurately approximate the ground truth than noisy observations and predict future equilibria when topology changes. We empirically demonstrate the effectiveness of the proposed method across ecological, gene regulatory, and epidemic networks. Our approach provides an efficient and effective way to estimate parameters from steady-state data and has the potential to improve predictions in networked dynamical systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.109.034301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!