We analyze the stationary current of Bose particles across the Bose-Hubbard chain connected to a battery, focusing on the effect of interparticle interactions. It is shown that the current magnitude drastically decreases as the strength of interparticle interactions exceeds the critical value which marks the transition to quantum chaos in the Bose-Hubbard Hamiltonian. We found that this transition is well reflected in the nonequilibrium many-body density matrix of the system. Namely, the level-spacing distribution for eigenvalues of the density matrix changes from Poisson to Wigner-Dyson distributions. With the further increase of the interaction strength, the Wigner-Dyson spectrum statistics change back to the Poisson statistics which now marks fermionization of the Bose particles. With respect to the stationary current, this leads to the counter-intuitive dependence of the current magnitude on the particle number.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.109.L032107 | DOI Listing |
Chaos
January 2025
School of Mechanical and Power Engineering, Zhengzhou University, Science Road 100, 450001 Zhengzhou, China.
In this paper, the complex and dynamically rich distribution of stable phases in the well-known discrete Ikeda map is studied in detail. The unfolding patterns of these stable phases are described through three complementary stability diagrams: the Lyapunov stability diagram, the isoperiod stability diagram, and the isospike stability diagram. The adding-doubling complexification cascade and fascinating non-quantum chiral pairs are discovered, marking the first report of such structures in discrete mapping.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany.
Quantum batteries are energy-storing devices, governed by quantum mechanics, that promise high charging performance thanks to collective effects. Because of its experimental feasibility, the Dicke battery-which comprises N two-level systems coupled to a common photon mode-is one of the most promising designs for quantum batteries. However, the chaotic nature of the model severely hinders the extractable energy (ergotropy).
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, C.P. 04510 Mexico City, Mexico.
Quantum chaos has recently received increasing attention due to its relationship with experimental and theoretical studies of nonequilibrium quantum dynamics, thermalization, and the scrambling of quantum information. In an isolated system, quantum chaos refers to properties of the spectrum that emerge when the classical counterpart of the system is chaotic. However, despite experimental progress leading to longer coherence times, interactions with an environment can never be neglected, which calls for a definition of quantum chaos in dissipative systems.
View Article and Find Full Text PDFBiosystems
December 2024
ProtoBioCybernetics & Protocellular Metabolomics, The Gene Emergence Project, The Origin of Life Science Foundation, Inc, USA. Electronic address:
Any homeostatic protometabolism would have required orchestration of disparate biochemical pathways into integrated circuits. Extraordinarily specific molecular assemblies were also required at the right time and place. Assembly Theory conflated with its cousins-Complexity Theory, Chaos theory, Quantum Mechanics, Irreversible Nonequilibrium Thermodynamics and Molecular Evolution theory- collectively have great naturalistic appeal in hopes of their providing the needed exquisite steering and controls.
View Article and Find Full Text PDFPhys Rev E
November 2024
Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
We study dynamical localization in an ultracold atom confined in an optical lattice that is simultaneously shaken by two competing pulsatile modulations with different amplitudes, periods, and waveforms. The effects of finite-width time pulses, modulation waveforms, and commensurable and incommensurable driving periods are investigated. We describe a particularly complex scenario and conclude that dynamical localization can survive, or even increase, when a periodic modulation is replaced by a quasiperiodic one of equal amplitude.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!