While bouncing walking silicone oil droplets (walkers) do show many quantumlike phenomena, the original, most intriguing, double-slit experiment with walkers has been shown to be an overinterpretation of data. Several experiments and numerical simulations have proven that for at least some parameter region there is no randomness. Still, true randomness was claimed to be observed in an experiment on chaotically bouncing walkers. Also, most of the available phase space has not been investigated. The main goal of this paper is therefore to look for true interference and chaos in the entire phase space. Recently, we made an extensive investigation of drops interacting with slits, but still in a limited range. However, the outcome was always deterministic and only incidentally mimicked the statistics of the corresponding quantum case. We also showed that the extra interference, already seen by others, in the double-slit case was caused by reflection of waves from the outlet of the unused slit after passage and thus was not a true double-slit effect. A new theoretical treatment of bouncing drop dynamics has since given analytic relations for the associated wave field, leading to a proposal for criteria for the possible occurrence of true interference in the double-slit experiment. Satisfying these criteria, requires working close to the onset of the Faraday instability, with two spatial conditions favoring slow walkers, and a temporal condition favoring fast walkers. The regions of high velocity, where the walkers bounce periodically, and of very low velocity, with chaotically bouncing walkers, have not been comprehensively investigated so far. We have therefore looked at these regions, probing the limits for interaction with slits. Furthermore, noting that a short transit time is essential to fulfill the criteria, experiments were done using double-slit barriers only 0.5 and 2 mm broad. Nowhere was true interference or a chaotic response found. As the theory has implications for many of the observed quantumlike phenomena involving walkers as, e.g., tunneling and interaction between drops, we have measured the spatial and temporal decay of the wave field. A comparison with the theory shows very good agreement but leads to a reformulation of the above-mentioned criteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.109.035101 | DOI Listing |
Sci Rep
January 2025
School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.
Metasurfaces have exhibited excellent capabilities in controlling main characteristics of electromagnetic fields. Thus, a lot of significant achievements have been attained in many areas especially in the fields of hologram and near-field imaging. However, some of these designs are implemented in a manner of interleaved subarrays that complicates the design and makes them difficult to achieve integration.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
Clinical Memory Research Unit, Clinical Sciences in Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Sweden. Electronic address:
As novel, anti-amyloid therapies have become more widely available, access to timely and accurate diagnosis has become integral to ensuring optimal treatment of patients with early-stage Alzheimer's disease (AD). Plasma biomarkers are a promising tool for identifying AD pathology; however, several technical and clinical factors need to be considered prior to their implementation in routine clinical use. Given the rapid pace of advancements in the field and the wide array of available biomarkers and tests, this review aims to summarize these considerations, evaluate available platforms, and discuss the steps needed to bring plasma biomarker testing to the clinic.
View Article and Find Full Text PDFPhysiol Rev
January 2025
Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261.
The redox signaling network in mammals has garnered enormous interest and taken on major biological significance in recent years as the scope of NADPH oxidases (NOXs) as regulators of physiological signaling and cellular degeneration has grown exponentially. All NOX subtypes have in common the capacity to generate reactive oxygen species (ROS) superoxide anion (O) and/or hydrogen peroxide (HO). A baseline, normal level of ROS formation supports a wide range of processes under physiological conditions.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
Ab initio calculations of electric field gradients (EFGs) in molecular crystals have advanced significantly due to the gauge including projector augmented wave (GIPAW) formalism, which accounts for the infinite periodicity in crystals. However, theoretical accuracies still lag behind experimental ones, making it challenging to distinguish experimentally distinguishable similar structures, a deficiency largely attributed to the limitation of GIPAW codes to generalized gradient approximation (GGA) density functional theory (DFT) functionals. In this study, we investigate whether hybrid DFT functionals can enhance the EFG calculation accuracy and the associated geometry optimization.
View Article and Find Full Text PDFJ Educ Health Promot
November 2024
Department of Medical-Surgical Nursing and Basic Sciences, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran.
Background: The period before diagnostic and therapeutic procedures is associated with increased anxiety levels in patients due to a lack of sufficient information. This study aimed to determine the effect of education on physiological and psychological anxiety levels in patients before extracorporeal shock wave lithotripsy (ESWL).
Materials And Methods: This randomized clinical trial was conducted at Baharloo Hospital in Tehran on 122 patients, and the samples were selected in two stages.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!