Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Graphs have become widely used to represent and study social, biological, and technological systems. Statistical methods to analyze empirical graphs were proposed based on the graph's spectral density. However, their running time is cubic in the number of vertices, precluding direct application to large instances. Thus, efficient algorithms to calculate the spectral density become necessary. For sparse graphs, the cavity method can efficiently approximate the spectral density of locally treelike undirected and directed graphs. However, it does not apply to most empirical graphs because they have heterogeneous structures. Thus, we propose methods for undirected and directed graphs with heterogeneous structures using a new vertex's neighborhood definition and the cavity approach. Our methods' time and space complexities are O(|E|h_{max}^{3}t) and O(|E|h_{max}^{2}t), respectively, where |E| is the number of edges, h_{max} is the size of the largest local neighborhood of a vertex, and t is the number of iterations required for convergence. We demonstrate the practical efficacy by estimating the spectral density of simulated and real-world undirected and directed graphs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.109.034303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!