Reciprocal interactions between the tumor microenvironment (TME) and cancer cells play important roles in tumorigenesis and progression of glioma. Glioma-associated macrophages (GAMs), either of peripheral origin or representing brain-intrinsic microglia, are the majority population of infiltrating immune cells in glioma. GAMs, usually classified into M1 and M2 phenotypes, have remarkable plasticity and regulate tumor progression through different metabolic pathways. Recently, research efforts have increasingly focused on GAMs metabolism as potential targets for glioma therapy. This review aims to delineate the metabolic characteristics of GAMs within the TME and provide a summary of current therapeutic strategies targeting GAMs metabolism in glioma. The goal is to provide novel insights and therapeutic pathways for glioma by highlighting the significance of GAMs metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022384 | PMC |
http://dx.doi.org/10.1186/s13578-024-01231-7 | DOI Listing |
Sci Adv
January 2025
School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).
View Article and Find Full Text PDFCrit Care
January 2025
Brain Physics Laboratory, Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, UK.
Background: The oxygen reactivity index (ORx) reflects the correlation between focal brain tissue oxygen (pbtO) and the cerebral perfusion pressure (CPP). Previous, small cohort studies were conflicting on whether ORx conveys cerebral autoregulatory information and if it is related to outcome in traumatic brain injury (TBI). Thus, we aimed to investigate these issues in a larger TBI cohort.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
Rev Cardiovasc Med
December 2024
Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 223300 Huaian, Jiangsu, China.
Background: Iron metabolism may play a role in cardiovascular disease (CVD) pathogenesis. The association between iron metabolism and CVD has yet to be fully investigated. This study evaluated whether iron metabolism was associated with CVD risk and whether the body mass index (BMI) of US adults varied the association.
View Article and Find Full Text PDFMedicine (Baltimore)
December 2024
Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Beijing, China.
Background: This study investigates the role of S100A11 as a potential biomarker for glioma-associated macrophages (GAMs) and its correlation with GAMs infiltration in glioblastoma multiforme, aiming to better understand the immune microenvironment of glioma.
Methods: We conducted a comprehensive study using various techniques and approaches. First, we examined the expression of S100A11 on GAMs through Western blot, immunohistochemistry, and immunofluorescence analyses.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!