Spiking neural networks (SNNs) are receiving increased attention because they mimic synaptic connections in biological systems and produce spike trains, which can be approximated by binary values for computational efficiency. Recently, the addition of convolutional layers to combine the feature extraction power of convolutional networks with the computational efficiency of SNNs has been introduced. This paper studies the feasibility of using a convolutional spiking neural network (CSNN) to detect anticipatory slow cortical potentials (SCPs) related to braking intention in human participants using an electroencephalogram (EEG). Data was collected during an experiment wherein participants operated a remote-controlled vehicle on a testbed designed to simulate an urban environment. Participants were alerted to an incoming braking event via an audio countdown to elicit anticipatory potentials that were measured using an EEG. The CSNN's performance was compared to a standard CNN, EEGNet and three graph neural networks via 10-fold cross-validation. The CSNN outperformed all the other neural networks, and had a predictive accuracy of 99.06% with a true positive rate of 98.50%, a true negative rate of 99.20% and an F1-score of 0.98. Performance of the CSNN was comparable to the CNN in an ablation study using a subset of EEG channels that localized SCPs. Classification performance of the CSNN degraded only slightly when the floating-point EEG data were converted into spike trains via delta modulation to mimic synaptic connections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024189PMC
http://dx.doi.org/10.1038/s41598-024-59469-7DOI Listing

Publication Analysis

Top Keywords

neural networks
16
spiking neural
12
convolutional spiking
8
mimic synaptic
8
synaptic connections
8
spike trains
8
computational efficiency
8
eeg data
8
performance csnn
8
neural
5

Similar Publications

Physics-driven deep learning (PD-DL) methods have gained popularity for improved reconstruction of fast MRI scans. Though supervised learning has been used in early works, there has been a recent interest in unsupervised learning methods for training PD-DL. In this work, we take inspiration from statistical image processing and compressed sensing (CS), and propose a novel convex loss function as an alternative learning strategy.

View Article and Find Full Text PDF

Artificial Intelligence (AI) is rapidly transforming healthcare, particularly in orthopedics, by enhancing diagnostic accuracy, surgical planning, and personalized treatment. This review explores current applications of AI in orthopedics, focusing on its contributions to diagnostics and surgical procedures. Key methodologies such as artificial neural networks (ANNs), convolutional neural networks (CNNs), support vector machines (SVMs), and ensemble learning have significantly improved diagnostic precision and patient care.

View Article and Find Full Text PDF

Background: Heart failure should be diagnosed as early as possible. Although deep learning models can predict one or more echocardiographic findings from electrocardiograms (ECGs), such analyses are not comprehensive.

Objectives: This study aimed to develop a deep learning model for comprehensive prediction of echocardiographic findings from ECGs.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) substrates are garnering increasing interest for ultrasensitive high-throughput sensing. Notably, SERS-encoded nanostructures stand out due to their potential for nearly unlimited codification with excellent optical properties. In this paper we report a simple, versatile and cost-effective method for preparing SERS-encoded clusters.

View Article and Find Full Text PDF

Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks. Transplantation of neural stem cells holds promise to repair disrupted connections. Yet, ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!