The Pyrococcus horikoshii amino acid transporter Glt revealed, like other channels and transporters, activity mode switching, previously termed wanderlust kinetics. Unfortunately, to date, the basis of these activity fluctuations is not understood, probably due to a lack of experimental tools that directly access the structural features of transporters related to their instantaneous activity. Here, we take advantage of high-speed atomic force microscopy, unique in providing simultaneous structural and temporal resolution, to uncover the basis of kinetic mode switching in proteins. We developed membrane extension membrane protein reconstitution that allows the analysis of isolated molecules. Together with localization atomic force microscopy, principal component analysis and hidden Markov modeling, we could associate structural states to a functional timeline, allowing six structures to be solved from a single molecule, and an inward-facing state, IFS, to be determined as a kinetic dead-end in the conformational landscape. The approaches presented on Glt are generally applicable and open possibilities for time-resolved dynamic single-molecule structural biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490224 | PMC |
http://dx.doi.org/10.1038/s41594-024-01260-3 | DOI Listing |
Biophys J
January 2025
Department of Physics, Northeastern University, Boston, MA, 02115, USA. Electronic address:
Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.
View Article and Find Full Text PDFFoods
January 2025
Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China.
Although eicosapentaenoic acid (EPA) as a functional fatty acid has shown significant benefits for human health, its susceptibility to oxidation significantly limits its application. In this study, we developed a nanoemulsion of the lactoferrin (LTF)-EPA complex and conducted a thorough investigation of its macro- and molecular properties. By characterizing the emulsion with different LTF concentrations, we found that 1.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
Molecular hybridization, which consists of the combination of two or more pharmacophores into a single molecule, is an innovative approach in drug design to afford new chemical entities with enhanced biological activity. In the present study, this strategy was pursued to develop a new series of 6,7-dimethoxy-4-piperazinylquinoline-3-carbonitrile derivatives (-) with potential antibiotic activity by combining the quinoline, the piperazinyl, and the benzoylamino moieties, three recurrent frameworks in antimicrobial research. Initial in silico evaluations were conducted on the designed compounds, highlighting favorable ADMET and drug-likeness properties, which were synthesized through a multistep strategy, isolated, and fully characterized.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States.
Understanding structure-mechanical activity relationships (SMARs) in polymer mechanochemistry is essential for the rational design of mechanophores with desired properties, yet SMARs in noncovalent mechanical transformations remain relatively underexplored. In this study, we designed a subset of diarylethene mechanophores based on a lever-arm hypothesis and systematically investigated their mechanical activity toward a noncovalent-yet-chemical conversion of atropisomer stereochemistry. Results from Density functional theory (DFT) calculations, single-molecule force spectroscopy (SMFS) measurements, and ultrasonication experiments collectively support the lever-arm hypothesis and confirm the exceptional sensitivity of chemo-mechanical coupling in these atropisomers.
View Article and Find Full Text PDFElife
January 2025
Department of Molecular and Cell Biology, Berkeley, United States.
Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!