People correct for movement errors when acquiring new motor skills (de novo learning) or adapting well-known movements (motor adaptation). While de novo learning establishes new control policies, adaptation modifies existing ones, and previous work have distinguished behavioral and underlying brain mechanisms for each motor learning type. However, it is still unclear whether learning in each type interferes with the other. In study 1, we use a within-subjects design where participants train with both 30° visuomotor rotation and mirror reversal perturbations, to compare adaptation and de novo learning respectively. We find no perturbation order effects, and find no evidence for differences in learning rates and asymptotes for both perturbations. Explicit instructions also provide an advantage during early learning in both perturbations. However, mirror reversal learning shows larger inter-participant variability and slower movement initiation. Furthermore, we only observe reach aftereffects following rotation training. In study 2, we incorporate the mirror reversal in a browser-based task, to investigate under-studied de novo learning mechanisms like retention and generalization. Learning persists across three or more days, substantially transfers to the untrained hand, and to targets on both sides of the mirror axis. Our results extend insights for distinguishing motor skill acquisition from adapting well-known movements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024091PMC
http://dx.doi.org/10.1038/s41598-024-59445-1DOI Listing

Publication Analysis

Top Keywords

novo learning
20
mirror reversal
12
learning
11
retention generalization
8
motor adaptation
8
adapting well-known
8
well-known movements
8
adaptation novo
8
learning type
8
novo
5

Similar Publications

Rapid technological advancements have made it possible to generate single-cell data at a large scale. Several laboratories around the world can now generate single-cell transcriptomic data from different tissues. Unsupervised clustering, followed by annotation of the cell type of the identified clusters, is a crucial step in single-cell analyses.

View Article and Find Full Text PDF

A novel machine learning based framework for developing composite digital biomarkers of disease progression.

Front Digit Health

January 2025

Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ, United States.

Background: Current methods of measuring disease progression of neurodegenerative disorders, including Parkinson's disease (PD), largely rely on composite clinical rating scales, which are prone to subjective biases and lack the sensitivity to detect progression signals in a timely manner. Digital health technology (DHT)-derived measures offer potential solutions to provide objective, precise, and sensitive measures that address these limitations. However, the complexity of DHT datasets and the potential to derive numerous digital features that were not previously possible to measure pose challenges, including in selection of the most important digital features and construction of composite digital biomarkers.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality of life of patients and their families. Remote Monitoring Technologies (RMTs) offer a promising solution for early detection by tracking changes in behavioral and cognitive functions, such as memory, language, and problem-solving skills.

View Article and Find Full Text PDF

Patients with High-Grade Serous Ovarian Cancer (HGSOC) exhibit varied responses to treatment, with 20-30% showing de novo resistance to platinum-based chemotherapy. While hematoxylin-eosin (H&E)-stained pathological slides are used for routine diagnosis of cancer type, they may also contain diagnostically useful information about treatment response. Our study demonstrates that combining H&E-stained whole slide images (WSIs) with proteomic signatures using a multimodal deep learning framework significantly improves the prediction of platinum response in both discovery and validation cohorts.

View Article and Find Full Text PDF

MPEMDA: A multi-similarity integration approach with pre-completion and error correction for predicting microbe-drug associations.

Methods

January 2025

School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China.

Exploring the associations between microbes and drugs offers valuable insights into their underlying mechanisms. Traditional wet lab experiments, while reliable, are often time-consuming and labor-intensive, making computational approaches an attractive alternative. Existing similarity-based machine learning models for predicting microbe-drug associations typically rely on integrated similarities as input, neglecting the unique contributions of individual similarities, which can compromise predictive accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!