Nails can be used as an alternative to hair for examining past drug use. However, daily hand-and-nail care can eliminate the internal drugs. Therefore, we developed an evaluation method to examine the effects of the external environment on drug stability in nails using micro-segmental analysis. First, reference nails containing drugs were prepared by collecting fingernails from participants who had consumed hay-fever medicines continuously for 4 months. Next, the entire free edge of a reference nail was cut into halves at the centerline; one side was stored as an untreated block, and the other was treated with various hand/nail care products. Both nail blocks were washed and segmented at 0.5-mm intervals in the width direction. Each segment in the extraction solution was crushed with stainless-steel beads, sonicated, and soaked in the solution for 24 h. The analytes in extracts were quantified by LC-MS/MS, and the drug concentrations between the treated and untreated blocks were compared. The drug concentrations decreased slightly in nails treated with manicure and gel-nail products. The analytes in nails tended to be lower in water-rich products such as hand soap and hand cream than in oil-rich products such as nailcare oil and acetone-free remover. The developed method using micro-segmental analysis enabled the evaluation of the effects of various hand/nail care products on drug stability in a limited number of nails. This would also be useful for examining the effects of severe environments on drugs in nails collected from cases of unnatural death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dta.3698 | DOI Listing |
J Chem Inf Model
January 2025
Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Laboratory for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, 34734 İstanbul, Türkiye.
is implicated in a range of conditions, including autism spectrum disorder, intellectual disability, seizures, autosomal recessive nonsyndromic intellectual disability, heterotaxy, and ciliary dysfunction. In order to understand the molecular mechanisms underlying these conditions, we focused on the structural and dynamic activity consequences of mutations within this gene. In this study, whole exome sequencing identified the c.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan.
Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).
View Article and Find Full Text PDFCells
December 2024
Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea.
The NLRP3 inflammasome, plays a critical role in the pathogenesis of rheumatoid arthritis (RA) by activating inflammatory cytokines such as IL1β and IL18. Targeting NLRP3 has emerged as a promising therapeutic strategy for RA. In this study, a multidisciplinary approach combining machine learning, quantitative structure-activity relationship (QSAR) modeling, structure-activity landscape index (SALI), docking, molecular dynamics (MD), and molecular mechanics Poisson-Boltzmann surface area MM/PBSA assays was employed to identify novel NLRP3 inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!