Durable Perovskite Solar Cells with 24.5% Average Efficiency: The Role of Rigid Conjugated Core in Molecular Semiconductors.

Adv Mater

State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.

Published: July 2024

Efficient and robust n-i-p perovskite solar cells necessitate superior organic hole-transport materials with both mechanical and electronic prowess. Deciphering the structure-property relationship of these materials is crucial for practical perovskite solar cell applications. Through direct arylation, two high glass transition temperature molecular semiconductors, DBC-ETPA (202 °C) and TPE-ETPA (180 °C) are synthesized, using dibenzo[g,p]chrysene (DBC) and 1,1,2,2-tetraphenylethene (TPE) tetrabromides with triphenylene-ethylenedioxythiophene-dimethoxytriphenylamine (ETPA). In comparison to spiro-OMeTAD, both semiconductors exhibit shallower HOMO energy levels, resulting in increased hole densities (generated by air oxidation doping) and accelerated hole extraction from photoexcited perovskite. Experimental and theoretical studies highlight the more rigid DBC core, enhancing hole mobility due to reduced reorganization energy and lower energy disorder. Importantly, DBC-ETPA possesses a higher cohesive energy density, leading to lower ion diffusion coefficients and higher Young's moduli. Leveraging these attributes, DBC-ETPA is employed as the primary hole-transport layer component, yielding perovskite solar cells with an average efficiency of 24.5%, surpassing spiro-OMeTAD reference cells (24.0%). Furthermore, DBC-ETPA-based cells exhibit superior operational stability and 85 °C thermal storage stability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202403403DOI Listing

Publication Analysis

Top Keywords

perovskite solar
16
solar cells
12
average efficiency
8
molecular semiconductors
8
cells
5
durable perovskite
4
solar
4
cells 245%
4
245% average
4
efficiency role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!