A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recent advancements in nanomaterial-mediated ferroptosis-induced cancer therapy: Importance of molecular dynamics and novel strategies. | LitMetric

AI Article Synopsis

  • - Ferroptosis is a new type of cell death that occurs when oxidative damage outpaces protective responses, showing promise for cancer treatment, and it is distinct from apoptosis and necrosis.
  • - Current molecular therapies struggle with inducing ferroptosis due to issues like poor solubility and rapid metabolism; however, nanotechnology uses iron-based nanomaterials to effectively trigger this process by increasing iron and reactive oxygen species levels in cells.
  • - The review discusses the mechanisms of ferroptosis, the role of cell organelles in cancer therapy, and categorizes the various nanomaterials that can induce ferroptosis to aid in reducing tumor growth, along with practical design suggestions for therapeutic applications.

Article Abstract

Ferroptosis is a novel type of controlled cell death resulting from an imbalance between oxidative harm and protective mechanisms, demonstrating significant potential in combating cancer. It differs from other forms of cell death, such as apoptosis and necrosis. Molecular therapeutics have hard time playing the long-acting role of ferroptosis induction due to their limited water solubility, low cell targeting capacity, and quick metabolism in vivo. To this end, small molecule inducers based on biological factors have long been used as strategy to induce cell death. Research into ferroptosis and advancements in nanotechnology have led to the discovery that nanomaterials are superior to biological medications in triggering ferroptosis. Nanomaterials derived from iron can enhance ferroptosis induction by directly releasing large quantities of iron and increasing cell ROS levels. Moreover, utilizing nanomaterials to promote programmed cell death minimizes the probability of unfavorable effects induced by mutations in cancer-associated genes such as RAS and TP53. Taken together, this review summarizes the molecular mechanisms involved in ferroptosis along with the classification of ferroptosis induction. It also emphasized the importance of cell organelles in the control of ferroptosis in cancer therapy. The nanomaterials that trigger ferroptosis are categorized and explained. Iron-based and noniron-based nanomaterials with their characterization at the molecular and cellular levels have been explored, which will be useful for inducing ferroptosis that leads to reduced tumor growth. Within this framework, we offer a synopsis, which traverses the well-established mechanism of ferroptosis and offers practical suggestions for the design and therapeutic use of nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2024.122629DOI Listing

Publication Analysis

Top Keywords

cell death
16
ferroptosis induction
12
ferroptosis
11
cancer therapy
8
cell
7
nanomaterials
6
advancements nanomaterial-mediated
4
nanomaterial-mediated ferroptosis-induced
4
ferroptosis-induced cancer
4
molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!