A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Osteochondral fluid transport in an ex vivo system. | LitMetric

Osteochondral fluid transport in an ex vivo system.

Osteoarthritis Cartilage

Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA; Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT, USA; Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA. Electronic address:

Published: July 2024

Objective: Alterations to bone-to-cartilage fluid transport may contribute to the development of osteoarthritis (OA). Larger biological molecules in bone may transport from bone-to-cartilage (e.g., insulin, 5 kDa). However, many questions remain about fluid transport between these tissues. The objectives of this study were to (1) test for diffusion of 3 kDa molecular tracers from bone-to-cartilage and (2) assess potential differences in bone-to-cartilage fluid transport between different loading conditions.

Design: Osteochondral cores extracted from bovine femurs (N = 10 femurs, 10 cores/femur) were subjected to either no-load (i.e., pure diffusion), pre-load only, or cyclic compression (5 ± 2% or 10 ± 2% strain) in a two-chamber bioreactor. The bone was placed into the bone compartment followed by a 3 kDa dextran tracer, and tracer concentrations in the cartilage compartment were measured every 5 min for 120 min. Tracer concentrations were analyzed for differences in beginning, peak, and equilibrium concentrations, loading effects, and time-to-peak tracer concentration.

Results: Peak tracer concentration in the cartilage compartment was significantly higher compared to the beginning and equilibrium tracer concentrations. Cartilage-compartment tracer concentration and maximum fluorescent intensity were influenced by strain magnitude. No time-to-peak relationship was found between strain magnitudes and cartilage-compartment tracer concentration.

Conclusion: This study shows that bone-to-cartilage fluid transport occurs with 3 kDa dextran molecules. These are larger molecules to move between bone and cartilage than previously reported. Further, these results demonstrate the potential impact of cyclic compression on osteochondral fluid transport. Determining the baseline osteochondral fluid transport in healthy tissues is crucial to elucidating the mechanisms OA pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182706PMC
http://dx.doi.org/10.1016/j.joca.2024.02.946DOI Listing

Publication Analysis

Top Keywords

fluid transport
28
osteochondral fluid
12
bone-to-cartilage fluid
12
tracer concentrations
12
transport
8
cyclic compression
8
3 kda dextran
8
tracer
8
cartilage compartment
8
cartilage-compartment tracer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!