A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chromiomics: Chromium detoxification and approaches for engineering tolerance in plants. | LitMetric

Chromiomics: Chromium detoxification and approaches for engineering tolerance in plants.

Environ Pollut

Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India; Amity Centre for Nuclear Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India. Electronic address:

Published: June 2024

Chromium (Cr) is a heavy metal that poses a grave threat to the ecosystem including plants. Chromium is very harmful to plants due to its effects on many physiological and metabolic pathways culminating in a negative impact on plant's growth, development, and ability to take up nutrients. Plants have developed physiological, biochemical, and molecular ways of defense against Cr, such as by augmenting antioxidant potential to reduce reactive oxygen species (ROS). A number of genes have been discovered to play a significant role in the defense mechanisms of plants against Cr, for example, genes associated with the activation of phytochelatins, metallothioneins, and those of enzymes like glutathione-S-transferases. Along with this, a few miRNAs have been found to be associated in alleviating Cr stress and, to augment plant tolerance by controlling transcription factors, HSPs, and the expression of a few proteins and hormones. Defense pathway genes and miRNAs have been used for the generation of transgenic phytoremediator plants. Not only do the transgenic plants have a higher tolerance to Cr, but they also act as hyperaccumulators for Cr and have the potential to remediate other heavy metals. This article describes about environmental Cr contamination, Cr effects on plants, different genes and miRNAs involved in Cr stress mitigation and use of candidate genes, microRNAs for creating transgenic plant systems for phytoremediation, and the applications of CRISPR technology. It is expected that the integration of omics approach and advanced genomics will offer scope for more effective phytoremediation of Chromium in the coming years.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.123991DOI Listing

Publication Analysis

Top Keywords

plants
8
plants chromium
8
genes mirnas
8
genes
5
chromiomics chromium
4
chromium detoxification
4
detoxification approaches
4
approaches engineering
4
engineering tolerance
4
tolerance plants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!