For farmers around the world to protect crops from disturbing pests, it is common to use pesticides to ward off the growth of pests or even eliminate them. Even though pesticides are seen as a good thing for protecting crops, there is one thing that mustn't be forgotten the origin of the pesticide itself is a toxin compound that is dangerous if used irresponsibly. The main concern of this study is excessive use of pesticides may cause serious consequences to the ecosystem and environment through the accumulation of pesticide residue by irresponsible farmers. To minimize the effects of pesticide residues, the selection of the type of pesticide needs to be considered which type may not be harmful to the environment's health even though accumulation happens. Therefore, in this study, a fuzzy-based computational model assessor was built to measure the safety level of pesticides toward the environment. The fuzzy model was created with consideration of several parameters related to pesticide behaviors, its effects on beneficial organisms, and its persistence in the environment. The method used for this study includes literature reviewing, fuzzification, statistical approach, expert knowledge sharing, and quantitative analysis. The model created in this study can assist in a more accurate and realistic method of selecting better pesticide options that will be used by farmers. To ensure the validity of the model, verifying and validating the formula and pesticide result assessment were done with related literature articles. In this study, from 10 types of pesticides used as a sample, dodine, and iprodione pesticides are the best option for protecting crops with a safety level of 7.36, and abamectin, dimethoate, chorpyrifos, and methidathion are not safe options for farming use because of its potential of harming the environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079404 | PMC |
http://dx.doi.org/10.5620/eaht.2024003 | DOI Listing |
Mol Divers
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.
View Article and Find Full Text PDFArch Environ Contam Toxicol
January 2025
Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.
Aquatic systems are impacted by temperature fluctuations which can alter the toxicity of pesticides. Increased temperatures related to climate change have elevated pest activity, resulting in an escalation of pesticide use. One such pesticide class, pyrethroids, has replaced the use of several banned pesticides due to its low mammalian toxicity.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India.
In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.
View Article and Find Full Text PDFObes Rev
January 2025
Inserm UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (N-G-ERE), University of Lorraine, Nancy, France.
Limited literature addresses the association between pollution, stress, and obesity, and knowledge synthesis on the associations between these three topics has yet to be made. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases to identify studies dealing with the effects of semi-volatile organic compounds, pesticides, conservatives, and heavy metals on the psychosocial stress response and adiposity in humans, animals, and cells. The quality of papers and risk assessment were evaluated with ToxRTool, BEES-C instrument score, SYRCLE's risk of bias tool, and CAMARADES checklist.
View Article and Find Full Text PDFAnal Methods
November 2017
College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.
A novel method was established using a restricted access material combined with a molecularly imprinted polymer (RAM-MIP) as the sorbent material in solid phase extraction (SPE) for clean-up of α-endosulfan, β-endosulfan, endosulfate, endosulfan-ether, endosulfan lactone, heptachlor, heptachlor--epoxide, and heptachlor--epoxide in pork and gas chromatography (GC) for determination. The RAM-MIP was prepared by precipitation polymerization by using endosulfan as the template, methacrylic acid (MAA) as the monomer, glycidyl methacrylate (GMA) as the pro-hydrophilic co-monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, azobisisobutyronitrile (AIBN) as the initiator, and toluene as the porogen. Ultraviolet spectroscopy (UV) and H-nuclear magnetic resonance (H-NMR) analysis verified that MAA interacted specifically with endosulfan in a ratio of 1 : 1 in the pre-polymerization solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!