We compared the immediate response and recovery of femoral cartilage morphology following aerobic or resistance exercise to a control condition. Fifteen healthy young males (23.9 years; 170.1 cm; 69.7 kg) visited the laboratory three separate days and randomly performed one of the 30-min exercise aerobic exercises (treadmill running), resistance exercises (leg presses, back squats, and knee extensions), or seated rest as the control, each followed by the 50-min recovery. Ultrasonographic images of the femoral cartilage cross-sectional area (CSA) were obtained before and after exercise and every 5 min thereafter. To test exercise effects over time, a mixed model analysis of variance and Tukey-Kramer post-hoc tests were performed (<0.05). The femoral cartilage CSA was different (condition×time: F=4.30, <0.0001) and the femoral cartilage CSA was decreased after the aerobic (-5.8%, <0.0001) and the resistance (-3.4%, =0.04) exercises compared to the re-exercise levels. Deformed femoral cartilage CSA took 35 and 10 min to return to the pre-exercise levels after aerobic and resistance exercises (+>+0.09), respectively. Thirty minutes of moderate exertion performing aerobic or resistance exercises immediately reduced the femoral cartilage CSA. A rest period ranging from 10 to 35 min was required for cartilage recovery after weight-bearing exercises.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-2308-3148DOI Listing

Publication Analysis

Top Keywords

femoral cartilage
12
cartilage cross-sectional
8
cross-sectional area
8
aerobic resistance
8
resistance exercise
8
exercise
5
change femoral
4
area aerobic
4
exercise compared
4
compared response
4

Similar Publications

Therapeutic efficacy of intra-articular injection of human adipose-derived mesenchymal stem cells in a sheep model of knee osteoarthritis.

Stem Cell Res Ther

January 2025

Cellular Biopharma (Shanghai) Co., Ltd, Building 3, No.85, Faladi Road, Pudong New Area, Shanghai, 200233, China.

Background: Mesenchymal stem cells have great potential for repairing articular cartilage and treating knee osteoarthritis (KOA). Nonetheless, little is known about the efficacy of human adipose-derived mesenchymal stem cells (haMSCs) for KOA in large animal models.

Methods: This study evaluated the therapeutic efficacy of haMSCs in knee articular cartilage repair in a sheep model of KOA.

View Article and Find Full Text PDF

Purpose: To quantitatively verify whether degeneration in the quality of the medial femoral cartilage is correlated with muscle volume loss and intramuscular adipose tissue (IntraMAT) infiltration in quadriceps using magnetic resonance imaging (MRI).

Methods: Of the 66 older adult participants ≥60 years old (74.5 ± 6.

View Article and Find Full Text PDF

The goal of medial open-wedge high tibial osteotomy (MOW-HTO) is to redistribute load by realigning the lower limb. This surgery is indicated for mild to moderate medial compartment osteoarthritis with varus deformity in cases unresponsive to conservative treatment. Procedures for accompanying cartilage lesions, such as multiple drilling on the medial femoral condyle (MFC), are often performed simultaneously, potentially affecting bone metabolism along with load redistribution and union progression.

View Article and Find Full Text PDF

Background: Microfracture drilling is a surgical technique that involves creating multiple perforations in areas of cartilage defects to recruit stem cells from the bone marrow, thereby promoting cartilage regeneration in the knee joint. Increasing the exposed bone marrow surface area (more holes in the same area) can enhance stem cell outflow. However, when the exposed area is large, it may affect the mechanical strength of the bone at the site of the cartilage defect.

View Article and Find Full Text PDF

Histopathology of spontaneous lesions in FVB/N mice.

J Toxicol Pathol

January 2025

Safety and Bioscience Research Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd. 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan.

The FVB/N mouse strain is widely used in transgenic studies and as a model for autoimmune diseases. Although spontaneous lesions have been reported in aged FVB/N mice, information regarding younger FVB/N mice is lacking. This study aimed to investigate the spontaneous lesions in young FVB/N mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!