Porous structures inspired by porcupine quill: multiscale design optimization approach.

Bioinspir Biomim

School of Engineering, RMIT University, Melbourne VIC 3001, Australia.

Published: May 2024

This paper presents a novel approach for designing a freeform bending-resistant structure from the combination of explicit discrete component-based topology optimization (TO) and the porcupine quill-inspired features. To embed the porcupine quill's features into the TO formulations, the method involves constructing discrete components at various scales to imitate features including solid shell, stochastically distributed pores, and graded stiffeners. The components are iteratively updated, and the optimization process allows for the grading of quill-inspired features while achieving optimal structural compliance under bending loads. The proposed approach is demonstrated to be effective through the resolution of Messershmitt-Bolkow-Blohm (MBB) beam designs, parameterized studies of geometric parameters, and numerical validation of long-span and short-span quill-inspired beam designs. By examining the von Mises stress distribution, the study highlights the mitigation of material yielding at the shell region brought by the geometric features of porcupine quills, leading to the potential theory support for the bending resistance. The optimized MBB beams are manufactured using the material extrusion technique, and three-point bending tests are conducted to explore the failure mitigation capability of the quill-inspired beam under large deformation. Consequently, the study concludes that the proposed quill-inspired component-based TO approach can design a structure with excellent bending resistance according to the improved energy absorption as well as increased deformation after reaching 75% peak load.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3190/ad3ff5DOI Listing

Publication Analysis

Top Keywords

quill-inspired features
8
beam designs
8
quill-inspired beam
8
bending resistance
8
quill-inspired
5
features
5
porous structures
4
structures inspired
4
porcupine
4
inspired porcupine
4

Similar Publications

This paper presents a novel approach for designing a freeform bending-resistant structure from the combination of explicit discrete component-based topology optimization (TO) and the porcupine quill-inspired features. To embed the porcupine quill's features into the TO formulations, the method involves constructing discrete components at various scales to imitate features including solid shell, stochastically distributed pores, and graded stiffeners. The components are iteratively updated, and the optimization process allows for the grading of quill-inspired features while achieving optimal structural compliance under bending loads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!