Fulvic acid, prevalent in humus derived from the anaerobic digestion of kitchen wastewater, is crucial in organic matter transformation. However, its effects and underlying mechanisms remain unclear. In this study, the fate of anaerobic digestion of artificial and kitchen wastewater with different fulvic acid contents was investigated. The results showed that 125 mg/L fulvic acid resulted in a 64.02 and 51.72 % increase in methane production in synthetic and kitchen wastewater, respectively. Fulvic acid acted as an electron mediator and increased substrate oxidation by boosting NAD and ATP levels, thereby increasing microbial metabolic rates and ensuring an adequate substrate for methane generation. Isotope analysis suggested that fulvic acid boosts the conversion of volatile fatty acids to methane via the interspecies electron transfer pathway. Gene expression analysis revealed that cytochrome c, FAD, and other electron transport coenzymes were upregulated by fulvic acid, thereby enhancing substrate utilisation and biogas quality. Fulvic acid presented a dual stimulatory and inhibitory effect on anaerobic digestion, with concentrations over 125 mg/L diminishing its positive impact. This dual effect may stem from the properties and concentrations of fulvic acid. This study revealed the effect mechanism of fulvic acid and provided insights into the humus performance in anaerobic digestion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121603 | DOI Listing |
Water Res
December 2024
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China. Electronic address:
In aqueous environments, microplastics (MPs) undergo photoaging, releasing dissolved organic matter (DOM). Disinfection byproducts (DBPs) formation from natural organic matter (NOM) phototransformation has been reported. However, the impact of NOM on the photoaging of MPs (especially nitrogen-containing MPs) and subsequent nitrogenous DBPs (N-DBPs) formation remains unknown.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environmental Science and Engineering, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.
In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by OH/O using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Production Department, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
Maize (Zea mays L.) faces significant challenges to its growth and productivity from heavy metal stress, particularly Chromium (Cr) stress, which induces reactive oxygen species (ROS) generation and damages photosynthetic tissues. This study aimed to investigate the effects of fulvic acid (FA) application, via foliar spray or root irrigation, on mitigating chromium stress in maize by evaluating its impact on antioxidant activity and growth parameters.
View Article and Find Full Text PDFMar Environ Res
January 2025
Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China. Electronic address:
The world's largest green tide, caused by Ulva prolifera, in the Yellow Sea negatively affects the social and economic development of China's coastal region. The dissolved organic matter (DOM) released from U. prolifera is a potential threat to the offshore ecological health.
View Article and Find Full Text PDFHumic substances, such as Fulvic acid (FA) and humic acid (HA), are widely used for the remediation of heavy metal-contaminated soils due to their ability to enhance metal mobility and facilitate plant uptake. In this study, we conducted a pot experiment with alfalfa to investigate the effects of FA and HA amendments on the mobility of molybdenum (Mo) in the soil, its uptake by alfalfa plants, and subsequent changes in the microbial community. The results demonstrated that both FA and HA influence Mo accumulation in the soil and plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!