Cytochrome c nitrite reductase, NrfA, is a soluble, periplasmic pentaheme cytochrome responsible for the reduction of nitrite to ammonium in the Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway, a vital reaction in the global nitrogen cycle. NrfA catalyzes this six-electron and eight-proton reduction of nitrite at a single active site with the help of its quinol oxidase partners. In this review, we summarize the latest progress in elucidating the reaction mechanism of ammonia production, including new findings about the active site architecture of NrfA, as well as recent results that elucidate electron transfer and storage in the pentaheme scaffold of this enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2024.112542DOI Listing

Publication Analysis

Top Keywords

cytochrome nitrite
8
nitrite reductase
8
dissimilatory nitrate
8
nitrate reduction
8
reduction ammonium
8
reduction nitrite
8
active site
8
mechanistic developments
4
developments cytochrome
4
nitrite
4

Similar Publications

Partial denitrification coupled with anammox is a promising approach for sustainable nitrogen removal from wastewater. However, this coupling can be influenced by hydrazine (NH) released by anammox bacteria. This study aimed to reveal how NH regulates partial denitrification.

View Article and Find Full Text PDF

Saffron and its major constituents against neurodegenerative diseases: A mechanistic review.

Phytomedicine

December 2024

Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. Electronic address:

Article Synopsis
  • * The study systematically reviews existing research on saffron and its key components, focusing on their effectiveness against NDDs and the signaling pathways involved in their action.
  • * Results indicate that saffron and its metabolites—like crocin and safranal—can effectively manage various NDDs, including Alzheimer's and Parkinson's, by influencing apoptosis, inflammation, and oxidative stress pathways.
View Article and Find Full Text PDF

The upgrade of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France to an Extremely Brilliant Source (EBS) is expected to enable time-resolved synchrotron serial crystallography (SSX) experiments with sub-millisecond time resolution. ID29 is a new beamline dedicated to SSX experiments at ESRF-EBS. Here, we report experiments emerging from the initial phase of user operation at ID29.

View Article and Find Full Text PDF

As nitrite, sulfite has been used in food preservation for centuries but how it inhibits bacterial growth remains underexplored. To address this issue, in this study, we set out to test if cytochrome (cyt) c proteins protect bacteria from the damage of certain reactive sulfur species (RSS) because they do so in the case of reactive nitrogen species (RNS). We show that some reactive sulfur species, such as sulfite and peroxymonosulfate (PMS), inhibit growth of bacterial strains devoid of cytochrome (cyt) c proteins.

View Article and Find Full Text PDF

Bioelectrochemical anaerobic ammonium oxidation (anammox) systems allow eco-friendly removal of nitrogen from reject wastewater coming from biogas processing as the anammox bacteria have previously shown to have c-type cytochromes acting in the extracellular electron transport (EET) mechanism between the bacteria and electrode. The anammoxosome compartment present in anammox bacteria features a highly curved membrane and contains tubular structures along with electron-dense particles that contain iron, which could enhance the process of EET and enhance nitrogen removal by properly applied potentials. In this study, nitrogen removal was investigated in the electrostimulated anammox nitrogen removal (EANR) cells operated comparatively at open circuit and at applied potentials of - 300 mV, - 500 mV, and - 700 mV vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!