Ginkgo (Ginkgo biloba L.) is one of the earliest extant species in seed plant phylogeny. Embryo development patterns can provide fundamental evidence for the origin, evolution, and adaptation of seeds. However, the architectural and morphological dynamics during embryogenesis in G. biloba remain elusive. Herein, we obtained over 2,200 visual slices from 3 stages of embryo development using micro-computed tomography imaging with improved staining methods. Based on 3-dimensional (3D) spatiotemporal pattern analysis, we found that a shoot apical meristem with 7 highly differentiated leaf primordia, including apical and axillary leaf buds, is present in mature Ginkgo embryos. 3D rendering from the front, top, and side views showed 2 separate transport systems of tracheids located in the hypocotyl and cotyledon, representing a unique pattern of embryogenesis. Furthermore, the morphological dynamic analysis of secretory cavities indicated their strong association with cotyledons during development. In addition, we identified genes GbLBD25a (lateral organ boundaries domain 25a), GbCESA2a (cellulose synthase 2a), GbMYB74c (myeloblastosis 74c), GbPIN2 (PIN-FORMED 2) associated with vascular development regulation, and GbWRKY1 (WRKYGOK 1), GbbHLH12a (basic helix-loop-helix 12a), and GbJAZ4 (jasmonate zim-domain 4) potentially involved in the formation of secretory cavities. Moreover, we found that flavonoid accumulation in mature embryos could enhance postgerminative growth and seedling establishment in harsh environments. Our 3D spatial reconstruction technique combined with multiomics analysis opens avenues for investigating developmental architecture and molecular mechanisms during embryogenesis and lays the foundation for evolutionary studies of embryo development and maturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/plphys/kiae219 | DOI Listing |
Dev Dyn
January 2025
Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.
View Article and Find Full Text PDFJ Clin Med
January 2025
Gynecological Research Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera 3820302, Israel.
In this research, we retrospectively studied the influence of the IVF vs. the ICSI technique on embryo morphokinetics by means of a time-lapse incubator in fresh cycles. A total of 2645 treatment cycles resulting in ovum pick-up of 11,471 fertilized oocytes were included in the research from 2018 to 2022.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 genes organized into four clusters (HOXA-D) located on different chromosomes. In relationship with their orderly arrangement along the chromosomes, these genes show nested expression patterns which imply that embryonic territories co-express multiple genes along the main body axis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy.
Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Long Ping Branch, College of Biology, Hunan University, Changsha 410125, China.
Phosphoenolpyruvate (PEP) plays a key role in the development of plants and exists in a wide variety of species. Research on the metabolic activities of PEP in plants has received increasing attention. PEP regulates multiple processes in plant growth and development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!