Nuclear forward scattering (NFS) is a synchrotron-based technique relying on the recoil-free nuclear resonance effect similar to Mössbauer spectroscopy. In this work, we introduce NFS for and measurements during electrocatalytic reactions. The technique enables faster data acquisition and better discrimination of certain iron sites in comparison to Mössbauer spectroscopy. It is directly accessible at various synchrotrons to a broad community of researchers and is applicable to multiple metal isotopes. We demonstrate the power of this technique with the hydrogen evolution mechanism of an immobilized iron porphyrin supported on carbon. Such catalysts are often considered as model systems for iron-nitrogen-carbon (FeNC) catalysts. Using and NFS in combination with theoretical predictions of spectroscopic data enables the identification of the intermediate that is formed prior to the rate-determining step. The conclusions on the reaction mechanism can be used for future optimization of immobilized molecular catalysts and metal-nitrogen-carbon (MNC) catalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082898 | PMC |
http://dx.doi.org/10.1021/jacs.4c00436 | DOI Listing |
Front Cell Dev Biol
December 2024
A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
Mitochondria are semi-autonomous organelles containing their own DNA (mtDNA), which is replicated independently of nuclear DNA (nDNA). While cell cycle arrest halts nDNA replication, mtDNA replication continues. In , flow cytometry enables semi-quantitative estimation of mtDNA levels by measuring the difference in signals between cells lacking mtDNA and those containing mtDNA.
View Article and Find Full Text PDFJ Environ Radioact
December 2024
College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610000, China; Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu, 610000, China. Electronic address:
Airborne gamma ray spectrum detection technology is an effective means to measure the concentration and spatial distribution of natural radionuclides in environmental media such as surface rocks and soil during aviation flight. Therefore, it is vital to fully explore the radiation information related to mineralization in airborne gamma spectrometry data and explore the dose distribution law of gamma radiation field of radionuclides in the detection area. This paper is based on the theoretical calculation model of ground-air interface gamma radiation field.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
The safety and cycle stability of lithium metal batteries (LMBs) under conditions of high cut-off voltage and fast charging put forward higher requirements for electrolytes. Here, a sulfonate-based deep eutectic electrolyte (DEE) resulting from the eutectic effect between solid sultone and lithium bis(trifluoromethanesulfonyl)imide without any other additives is reported. The intermolecular coordination effect triggers this eutectic phenomenon, as evidenced with nuclear magnetic resonance, and thus the electrochemical behavior of the DEE can be controlled by jointly regulating the coordination effects of F···H and Li···O intermolecular interactions.
View Article and Find Full Text PDFDrug Test Anal
December 2024
Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
A new nicotine delivery system in the form of tobacco-free nicotine pouches was introduced in Europe in 2019. These nicotine bags did not fall under the Tobacco Products Directive (TPD) II, which brought forward regulatory requirements for both cigarettes, related products, and e-liquids. As these pouches did not fall under the scope of the TPD, it was up to the member states to decide which action to be taken if any.
View Article and Find Full Text PDFHeliyon
December 2024
Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain.
The textile industry is one of the largest water consumers, and, as a result of its activity, it generates tons of wastewater. In this research, forward osmosis has been employed to tackle the critical need of treating textile wastewater. The HFFO2 membrane (Aquaporin) was used to process large volumes of real cotton dyeing wastewater, wool dyeing wastewater, and several types of textile end-of-pipe wastewater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!