Objective: TNFAIP8 and TIPE2 belong to TNFa-induced protein 8 (TNFAIP8/TIPE) family. They control apoptosis and direct leukocyte migration. Nucleus pulposus cell loss is a hallmark of intervertebral disc degeneration in response to injury, and inflammation may cause pain. Here, we examined the effects of TNFAIP8/TIPE2 deficiency on the intervertebral discs in mice with these genes deleted.
Design: Tail intervertebral discs in Tnfaip8 or Tipe2 single and double knockout mice ( Tnfaip8 -/- , Tipe2 -/- , and Tnfaip8/Tipe2 dko) , and wild-type controls were injured. The spine motion segments were stained with safranin O to reveal proteoglycans. Macrophages were identified by immunostaining, and selected inflammatory marker and collagen gene expression was examined by Real Time PCR.
Results: The injured tail intervertebral discs of Tnfaip -/- , Tipe2 -/- , and Tnfaip8/Tipe2 dko mice all displayed higher levels of proteoglycans than wild-type controls. Fewer macrophages were found in the injured intervertebral discs of Tipe2 -/- and Tnfaip8/Tipe2 dko mice than wild type. Il6 , Adam8 , and Col1 gene expression was downregulated in the injured intervertebral discs of Tnfip8/Tipe2 dko mice.
Conclusions: TNFAIP8 and TIPE2 loss of function ameliorated proteoglycan loss and inflammation in the injured intervertebral discs. They may serve as molecular targets to preserve disc structure and reduce inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398987 | PMC |
http://dx.doi.org/10.1097/PHM.0000000000002488 | DOI Listing |
J Vet Intern Med
January 2025
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
Background: Clinical characteristics of cervical hydrated nucleus pulposus extrusion (HNPE) in dogs compared to other causes of cervical myelopathy are not well described.
Hypothesis/objectives: To evaluate for clinical characteristics and mechanical ventilation likelihood associated with HNPE compared to other causes of cervical myelopathy.
Animals: Three hundred seventy-seven client-owned dogs from 2010 to 2022.
J Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Hebei Orthopaedic Research Institute, Hebei Medical University Third Hospital, No.139 Ziqiang Road, Shijiazhuang, 050051, P.R. China.
Objective: The postoperative recovery of patients with lumbar disc herniation (LDH) requires further study. This study aimed to establish and validate a predictive model for functional recovery in patients with LDH and explore associated risk factors.
Method: Patients with LDH undergoing PLIF admitted from January 1, 2018 to December 31, 2022 were included, and patient data were prospectively collected through follow-up.
J Orthop Surg Res
January 2025
Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia.
Background: Scoliosis is an idiopathic three-dimensional spine strain. The orthopedic parameter used to diagnose and evaluate the severity of the strain is Cobb's angle. This study proposes using this clinical parameter to reproduce a digital twin of the spine, calculate biomechanical stress changes, and characterize idiopathic scoliosis deformity through symmetrical degeneration of intervertebral discs, relying on patient-specific radiological measurements of the scoliotic curves.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopaedics, Qilu Hospital of Shandong University, No.107, Wenhuaxi Road, Lixia District, Jinan, Shandong Province, 250012, China.
Background: Ferroptosis was involved in the pathogenesis of intervertebral disc degeneration (IVDD). However, the exact mechanism of IVDD associated with ferroptosis still required deeper studies.
Method: The differentially expressed genes (DEGs) in rat lumbar disc tissue between the control and IVDD group treated with IL-1β were detected by RNA sequencing (RNA-seq).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!