Accurate outcome and exposure ascertainment in electronic health record (EHR) data, referred to as EHR phenotyping, relies on the completeness and accuracy of EHR data for each individual. However, some individuals, such as those with a greater comorbidity burden, visit the health care system more frequently and thus have more complete data, compared with others. Ignoring such dependence of exposure and outcome misclassification on visit frequency can bias estimates of associations in EHR analysis. We developed a framework for describing the structure of outcome and exposure misclassification due to informative visit processes in EHR data and assessed the utility of a quantitative bias analysis approach to adjusting for bias induced by informative visit patterns. Using simulations, we found that this method produced unbiased estimates across all informative visit structures, if the phenotype sensitivity and specificity were correctly specified. We applied this method in an example where the association between diabetes and progression-free survival in metastatic breast cancer patients may be subject to informative presence bias. The quantitative bias analysis approach allowed us to evaluate robustness of results to informative presence bias and indicated that findings were unlikely to change across a range of plausible values for phenotype sensitivity and specificity. Researchers using EHR data should carefully consider the informative visit structure reflected in their data and use appropriate approaches such as the quantitative bias analysis approach described here to evaluate robustness of study findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11027938 | PMC |
http://dx.doi.org/10.1097/EDE.0000000000001714 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!