The uniform semiclassical expression for the energy-dependent transmission probability through a barrier has been a staple of reaction rate theory for almost 90 years. Yet, when using the classical Euclidean action, the transmission probability is identical to 1/2 when the energy equals the barrier height since the Euclidean action vanishes at this energy. This result is generally incorrect. It also leads to an inaccurate estimate of the leading order term in an expansion of the thermal transmission coefficient. The central result of this paper is that adding an dependent correction to the uniform semiclassical expression, whether as a constant action or as a shift in the energy scale, not only corrects this inaccuracy but also leads to a theory that is more accurate than the previous one for almost any energy. Shifting the energy scale is a generalization of the vibrational perturbation theory 2 (VPT2) and is much more accurate than the "standard" VPT2 theory, especially when the potential is asymmetric. Shifting the action by a constant is a generalization of a result obtained by Yasumori and Fueki (YF) only for the Eckart barrier. The resulting modified VPT2 and YF semiclassical theories are applied to the symmetric and asymmetric Eckart barrier, a Gaussian barrier, and a tanh barrier. The one-dimensional theories are also generalized to many-dimensional systems. Their effect on the thermal instanton theory is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077496 | PMC |
http://dx.doi.org/10.1021/acs.jpca.4c00452 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!