Different forms of HCOOH in the depolymerization system play an important role in governing the monomeric products from lignin. We reported two strategies for the introduction of HCOOH to enrich the monophenols from kraft lignin by microwave-assisted depolymerization. The reaction of lignin models showed that HCOOH was in favor of the cleavage of C-O bonds (β-O-4 typically) and partial C-C bonds (C-C). Subsequently, Microwave-assisted depolymerization of lignin with two strategies was conducted via a designed dynamic vapor flow reaction system. Strategy A with HCOOH as pretreatment solvent showed excellent monophenols enrichment with total mass yields of 193.71 mg/g (lignin basis). Strategy B using HCOOH as reforming solvent vapor significantly increased the monophenols selectivity. It presented unique reforming and upgrading performance by generating catechol (42.59 mg/g, lignin basis) and homovanillic acid (17.58 mg/g, lignin basis). This study provided potential strategies for the efficient conversion of kraft lignin into high-value platform chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202400151 | DOI Listing |
Polymers (Basel)
January 2025
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
The preparation of biological phenolic resin (PF) with green recyclable biomaterials instead of phenol is a research hotspot for solving current resource and environmental problems. In this study, on the basis of introducing lignin into the phenolic system, daidzein of a renewable resource with a rigid structure was selected to modify lignin-based phenolic resin (LPF), and the improvement of the mechanical and thermal properties of the modified phenolic resin under different substitution ratios was studied. The friction materials were prepared with a daidzein-modified lignin-based phenolic resin (D-LPF) as the matrix binder, and their effects on the mechanics and friction and wear properties of friction materials were investigated.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Lab of Soil Ecosystem Health and Regulation, Fujian Province University (Fujian Agriculture and Forestry University), Fuzhou 350002, China. Electronic address:
Excessive copper (Cu) of rhizosphere inhibited the growth and development of citrus seedlings. Lignin deposition on the cell wall promotes plant Cu tolerance. However, the lignin biosynthesis in citrus leaves and roots that respond to Cu toxicity is not fully understood.
View Article and Find Full Text PDFPlants (Basel)
December 2024
The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832003, China.
Lodging resistance is one of the most important traits of machine-picked cotton. Lodging directly affects the cotton yield, quality and mechanical harvesting effect. However, there are only a few reports on the lodging resistance of cotton.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, n 11, Piracicaba, SP, 1341-900, Brazil.
The inclusion of forage sources in calf diets is often discussed, and the main point debated is whether the inclusion level, particle size, source, and how forage is offered may impact gut fill and reduce body weight gain, as well as impact gastrointestinal tract development. This study aimed to determine the effects of feeding forage sources with different qualities on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves. Forty-eight Holstein dairy calves were blocked according to sex and body weight (BW) at 28 days of life and randomly assigned to 1 of 4 dietary treatments.
View Article and Find Full Text PDFData Brief
December 2024
RISE PFI AS, Høgskoleringen 6B, 7491 Trondheim, Norway.
This data article summarizes the material properties of some added-lignin thermoformed pulps (ALTPs). This type of molded pulp is particularly suited for replacing plastics in environments, where moisture is encountered, as the lignin reduces the transport and adsorption of water. The dataset was measured on wet formed substrates with either softwood chemi-thermomechanical pulp (CTMP) or northern bleached softwood Kraft pulp (NBSK).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!