To accurately predict the life-cycle carbon reduction benefits of replacing a diesel heavy-duty truck with an electric one, taking a single heavy-duty truck as the object, the variation trend in electric and diesel carbon emission factors from 2023 to 2050 were predicted; coupled with the life spans and life-cycle mileage of the two types of heavy-duty trucks, a dynamic carbon emission model for the heavy-duty trucks was constructed in stages. The carbon footprints of the trucks under the "Net Zero Emissions by 2050 Scenario (NZE)", "Announced Pledges Scenario (APS)", and "Stated Policies Scenario (STEPS)" were analyzed. In addition, the carbon reduction and carbon reduction rate were calculated. The results showed that battery manufacturing and battery recycling were the main factors to impair the improvement of carbon reduction in the production and recycling stages of electric heavy-duty trucks, respectively. For every 1 g·(kW·h) reduction in the electricity carbon emission factor (CO), an electric heavy-duty truck could reduce 1.74 t of carbon emissions over its life cycle. Under the three scenarios, the carbon emissions during the operation stage of both types of heavy trucks accounted for more than 90% of the total life-cycle carbon emissions. Carbon reduction benefits from the highest to the lowest were NZE, APS, and STEPS, and their corresponding life-cycle carbon emission reductions were 1054.68, 1021.78, and 1007.97 t, with carbon reduction rates of 54.38%, 52.68%, and 51.97%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202305123DOI Listing

Publication Analysis

Top Keywords

carbon reduction
28
heavy-duty truck
16
carbon emission
16
carbon
15
reduction benefits
12
electric heavy-duty
12
life-cycle carbon
12
heavy-duty trucks
12
carbon emissions
12
reduction
8

Similar Publications

Precious metal-based single-atom catalysts (PM-SACs) hosted in N-doped carbon supports have shown new opportunities to revolutionize cathodic oxygen reduction reaction (ORR). However, stabilizing the high density of PM-N sites remains a challenge, primarily due to the inherently high free energy of isolated metal atoms, predisposing them to facile atomic agglomeration. Herein, a molten salt-assisted synthesis strategy is proposed to prepare porous PM/N-C (PM = Ru, Pt, and Pd) electrocatalysts with densely accessible PM-N sites.

View Article and Find Full Text PDF

Background/aim: Ivermectin was initially utilized as a veterinary medication, demonstrating efficacy against various parasites. Pancreatic cancer is currently one of the most recalcitrant diseases. The aim of the present study was to demonstrate the synergy of the combination of recombinant methioninase (rMETase) and ivermectin to eradicate human pancreatic cancer cells in vitro.

View Article and Find Full Text PDF

Assessing carbon stock change for effective Nature-based Solutions implementation allocation: A framework.

J Environ Manage

December 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang, PR China; Linhai Station of Zhejiang Provincial Forest Ecological Research, Taizhou University, Taizhou, 318000, Zhejiang, PR China; Taizhou Key Laboratory of Mountain Ecological Restoration and Special Industry Cultivation, Taizhou University, Taizhou, 318000, Zhejiang, PR China. Electronic address:

Mapping and assessing the carbon stock change (CSC) in urban areas can support the allocation of Nature-based Solutions (NbS) to mitigate climate change and advance urban sustainability. However, an effective framework concerning historical CSC and future simulation to support the allocation of NbS implementation is lacking. To fill this gap, we proposed a framework and applied it in the Zhejiang coastal region based on the assessment of historical (from 1990 to 2020) and predicted future (2030) CSC and local context analysis of urban and ecosystem challenges.

View Article and Find Full Text PDF

Driving factors of ship-induced nitrogen dioxide concentrations over coastal seas of China: Implications for ship emission management.

J Environ Manage

December 2024

College of Management, Shenzhen University, Shenzhen 518073, China; Center for Marine Development,Macau University of Science and Technology, Macao, 999078, China; Shenzhen International Maritime Institute, Shenzhen 518081, China. Electronic address:

Ships generate large amounts of air pollutants, including nitrogen dioxide (NO) that profoundly impacts air quality and poses serious threats to human health. It is crucial to understand the dynamics and drivers of ship-induced NO concentrations in China to support the prevention and control of fine particulate matter (PM) and ozone (O) pollution. This study built Generalized Additive Models (GAMs) to reveal the nonlinear effects of meteorological factors and ship emissions on ship-induced NO concentrations based on the Tropospheric Monitoring Instrument (TROPOMI) satellite data, AIS based emission model and meteorological data.

View Article and Find Full Text PDF

Elevated CO and goethite inhibited anaerobic oxidation of methane in paddy soils.

J Environ Manage

December 2024

College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.

Microbially mediated anaerobic oxidation of methane (AOM) regulates methane (CH) fluxes. Increases in the global atmospheric carbon dioxide (CO) concentration and iron oxide rich in paddy soils influence AOM. However, the response and mechanisms between these two processes and AOM remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!