Heavy metal pollution in soils of smelting sites is an important environmental problem to be solved urgently. Solidification technology has become one of the mainstream technologies for heavy metal remediation in contaminated sites owing to its shorter remediation time, low cost, and high treatment efficiency. On the basis of summarizing the latest research progress on the remediation of heavy metal pollution in sites by solidification in the past 10 years, this study focused on the mechanisms of solidification technology and analyzed the advantages and disadvantages of different mechanisms (mechanism of inorganic materials, mechanism of organic materials, mechanism of mechanical ball milling, and mechanism of microbial-induced carbonate mineralization (MICP)) and their scope of application. Then, according to the research focus and development trend presented by CiteSpace, the application prospects and limiting factors of MICP technology for the solidification and remediation of heavy metal pollution in sites were summarized from three aspects:the application of MICP in multi-metal remediation, the application of MICP composites in contaminated sites, and the influencing factors of MICP technology application. Finally, the prospects and challenges in solidification technology were put forward in order to provide reference for the future development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202305138 | DOI Listing |
Environ Sci Pollut Res Int
December 2024
Department of Agronomy, Faculty of Agricultural Sciences, SGT University, Gurugram, India.
Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.
View Article and Find Full Text PDFInorg Chem
December 2024
Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted extensive research attention due to their potential applications in information encryption, anticounterfeiting technology, and security logic. The strategic combinations of organic phosphor linkers and metal ions lead to tremendous frameworks, which could unveil many undiscovered properties of organics. Here, the synthesis and characterization of a three-dimensional MOF (Cd-MOF) is reported, which demonstrates enhanced blue photoluminescence and a phosphorescent lifetime of 124 ms as compared to the pristine linker (HL) under ambient conditions due to the scaffolding and heavy-atom effects of metal chains in the framework.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.
Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.
View Article and Find Full Text PDFBMC Vet Res
December 2024
Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
Strongylus vulgaris, a devastating parasitic nematode in equids, causes life-threatening verminous aneurysms that are challenging to diagnose early. This study pioneered integrating nanotechnology into an indirect enzyme-linked immunosorbent assay (i-ELISA) system to enhance the sensitivity and specificity for detecting S. vulgaris larval antigens in equine serum samples, with PCR confirmation of the species.
View Article and Find Full Text PDFJ Egypt Natl Canc Inst
December 2024
Department of Community Medicine, Vinayaka Mission's Homoeopathic Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Salem, India.
Green synthesis techniques have drawn a lot of interest lately since they are beneficial to the environment and have potential uses in a variety of industries, including biomedicine. Because of their special physicochemical characteristics, copper nanoparticles (CuNPs) have become one of the most interesting options for use in biological applications among nanomaterials. An overview of green synthesis methods for CuNPs is given in this review, along with a discussion of their applications in cancer therapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!