Objectives: This study aimed to investigate the effects of zingerone (ZNG) treatment on testicular toxicity in rats induced by sodium arsenite (SA).
Materials And Methods: In the study, five groups were formed (n=7) and the experimental groups were designated as follows; Vehicle group, ZNG group, SA group, SA+ZNG 25 group, and SA+ZNG 50 group. While SA was administered orally to rats at 10 mg/kg/bw, ZNG was given to rats orally at 25 and 50 mg/kg/bw doses for 14 days.
Results: As a result of the presented study, an increase was observed in the MDA contents of the testicular tissue of the rats administered SA, while significant decreases were observed in GSH levels, SOD, CAT, and GPx activities. The mRNA transcript levels of the pro-inflammatory genes NF-κB, TNF-α, IL-1β, and IL-6 were triggered after SA administration. Additionally, SA administration caused inflammation by increasing RAGE, NLRP3, and JAK-2/STAT3 gene expression. Moreover, endoplasmic reticulum (ER) stress occurred in the testicular tissues of SA-treated rats and thus ATF-6, PERK, IRE1, and GRP78 genes were up-regulated. SA caused apoptosis by up-regulating Bax and Caspase-3 expressions and inhibiting Bcl-2 expression in testicles. SA caused histological irregularities in the testicles, resulting in decreased sperm quality.
Conclusion: ZNG treatment reduced SA-induced oxidative stress, ER stress, inflammation, apoptosis, and histological irregularities in the testicles while increasing sperm quality. As a result, it was observed that ZNG could alleviate the toxicity caused by SA in the testicles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017849 | PMC |
http://dx.doi.org/10.22038/IJBMS.2024.73342.15934 | DOI Listing |
J Mycol Med
December 2024
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India. Electronic address:
Background: The increasing resistance of Candida albicans biofilms underscores the urgent need for effective antifungals. This study evaluated the efficacy of zingerone and elucidated its mode of action against C. albicans ATCC 90028 and clinical isolate C1.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa.
Objective: Ensuring adequate bone health is crucial for preventing conditions such as osteoporosis and fractures. Zingerone, a phytonutrient isolated from cooked ginger, has gained attention for its potential benefits in bone health. This study evaluated the osteoprotective potential of zingerone and its effects on differentiation and signalling pathways using SAOS-2 osteosarcoma and RAW264.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
J Biochem Mol Toxicol
December 2024
Department of Nursing, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan.
Triple negative breast cancer (TNBC) is characterized by high heterogenicity and aggressiveness and autophagy plays a complicated role in cancer development. Zingerone is reported to possess multiple pharmacological activities, including antitumors. This study explored the biological role and the relevant mechanisms of zingerone in TNBC.
View Article and Find Full Text PDFJ Trace Elem Med Biol
December 2024
Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!