Background: Antimicrobial stewardship programs (ASPs) are responsible for addressing unnecessary antimicrobial use. We describe our experience with a unique intervention to withdraw unnecessary antimicrobials.

Methods: Design, Setting, Participants: descriptive case series of adult inpatients at a single academic medical center, December 2021 to December 2022; Intervention: hospital-wide policy allowing ASP to discontinue inappropriate antimicrobials in select cases not resolved by prospective audit and feedback; Measures: count, date, and generic names of antimicrobials prescribed; reason for antimicrobial withdrawal (prolonged duration, no evidence of infection, or other); withdrawals by inpatient service (surgical or medical); time from antimicrobial start date to withdrawal intervention; days of therapy (DOT) saved; "nudge effect" defined as the prescribing team self-discontinuing withdrawn antimicrobial within 24 hours of withdrawal notice; appeals to withdrawals; ordering of alternative antimicrobials following withdrawal; incident infections, readmission, in-hospital mortality within 30 days of withdrawal intervention.

Results: There were 54 antimicrobials withdrawn among 36 unique patients during the study period; piperacillin-tazobactam followed by vancomycin were the most frequently withdrawn agents; prolonged duration of therapy or prophylaxis followed by no evidence of infection were the most common reasons for withdrawal; withdrawals occurred most often on surgical services; an estimated 236 DOT (27.2 DOT per 100 patient-days) were saved; 32% of withdrawals were appealed; alternative antimicrobials were ordered following 20% of withdrawals; no incident infections, readmissions or in-hospital deaths were definitively attributed to withdrawal intervention.

Conclusions: Our antimicrobial withdrawal intervention was a safe and effective addition to ASP activities to reduce inappropriate antimicrobial use and improve prescriber accountability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019577PMC
http://dx.doi.org/10.1017/ash.2024.48DOI Listing

Publication Analysis

Top Keywords

antimicrobial
8
antimicrobial stewardship
8
intervention withdraw
8
withdrawal
8
antimicrobial withdrawal
8
prolonged duration
8
evidence infection
8
withdrawal intervention
8
alternative antimicrobials
8
incident infections
8

Similar Publications

Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.

View Article and Find Full Text PDF

Background: Candida albicans is the primary cause of vulvovaginal candidiasis, a worldwide health concern for women. The use of supplemental methods, such as antimicrobial photodynamic therapy (aPDT) and probiotics, was promoted by the ineffectiveness of the existing antifungal drugs.

Methods: This study examines the combined effects of probiotics (Bacillus and Enterococcus isolated from the fermented pickles) and PDT (using red laser (655 nm, 18 J/cm) as a light source and methylene blue dye (30 mg/mL) as a photosensitizer) on the in vitro virulence activity of C.

View Article and Find Full Text PDF

The COVID-19 pandemic began in March 2020 and has affected many countries and infected over a million people. It has had a serious impact on people's physical and mental health, daily life and the global economy. Today, many drugs show limited efficacy in the treatment of COVID-19 and studies to develop effective drugs continue.

View Article and Find Full Text PDF

Development of pH and enzyme dual responsive chitosan/polyaspartic acid nanoparticle-embedded nanofibers for fruit preservation.

Int J Biol Macromol

January 2025

Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China. Electronic address:

This study focuses on the development and application of tea polyphenol-loaded chitosan/polyaspartic acid nanoparticles (TP@CS/PASP-Nps) embedded within polyvinyl alcohol (PVA) nanofibers to extend the shelf life of fruit. The nanofibers were fabricated using electrospinning, which enhanced the stability and uniform dispersion of the nanoparticles. Experimental results demonstrated that the TP@CS/PASP nanoparticles exhibit significant pH and protease-responsive release of TP, with a cumulative release of 56.

View Article and Find Full Text PDF

In situ growth of ZIF-8 nanoparticles on pure chitosan nanofibrous membranes for efficient antimicrobial wound dressings.

Int J Biol Macromol

January 2025

Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!