The valley polarization, induced by the magnetic proximity effect, in monolayer transition metal dichalcogenides (TMDCs), has attracted significant attention due to the intriguing fundamental physics. However, the enhancement and modulation of valley polarization for real device applications is still a challenge. Here, using first-principles calculations we investigate the valley polarization properties of monolayer TMDCs CrS and CrSe and how to enhance the valley polarization by constructing Janus CrSSe (with an internal electric field) and modulate the polarization in CrSSe by applying external electric fields. Janus CrSSe exhibits inversion symmetry breaking, internal electric field, spin-orbit coupling, and compelling spin-valley coupling. A magnetic substrate of the MnO monolayer can induce a modest magnetic moment in CrSe, CrSe, and CrSSe. Notably, the Janus structure with an internal electric field has a much larger valley compared with its non-Janus counterparts. Moreover, the strength of valley polarization can be further modulated by applying external electric fields. These findings suggest that Janus materials hold promise for designing and developing advanced valleytronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp05298bDOI Listing

Publication Analysis

Top Keywords

valley polarization
24
janus crsse
12
external electric
12
electric fields
12
internal electric
12
electric field
12
enhancement modulation
8
modulation valley
8
crsse internal
8
applying external
8

Similar Publications

Flexible Control of Chiral Superconductivity in Optically Driven Nodal Point Superconductors with Antiferromagnetism.

Phys Rev Lett

December 2024

Institute for Structure and Function and Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, People's Republic of China and Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, People's Republic of China.

Recent studies have attracted widespread attention on magnet-superconductor hybrid systems with emergent topological superconductivity. Here, we present the Floquet engineering of realistic two-dimensional topological nodal-point superconductors that are composed of antiferromagnetic monolayers in proximity to an s-wave superconductor. We show that Floquet chiral topological superconductivity arises due to light-induced breaking of the effective time-reversal symmetry.

View Article and Find Full Text PDF

This study proposes a spin-valley electron beam splitter based on the inner-edge states in a topological-insulator junction, which can allocate different ratios of spin-valley current outputs. Since the inner-edge states are associated with the "nearest path selection" mechanism, this device is referred to as the interface-modulating spin-valley electron beam splitter. Additionally, two perfect spin-valley filters in similar topological-insulator junctions are established in this study.

View Article and Find Full Text PDF

Regulation of the valleytronic properties in single-layer NbSeCl.

Phys Chem Chem Phys

January 2025

School of Physics and Electronic Information, Weifang University, Weifang 261061, China.

The regulation of the valleytronic properties of two-dimensional materials can contribute to the in-depth study of valley physics and improve its potential for applications in valleytronic devices. Herein, we systematically investigate the electronic properties and the modulation of the valleytronic properties in single-layer NbSeCl. Our results reveal that NbSeCl is a semiconductor with a 105.

View Article and Find Full Text PDF

Ferro-Valleytricity with In-Plane Spin Magnetization.

Nano Lett

December 2024

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China.

Ferro-valleytricity that manifests spin-orbit coupling (SOC)-induced spontaneous valley polarization is generally considered to occur in two-dimensional (2D) materials with out-of-plane spin magnetization. Here, we propose a mechanism to realize SOC-induced valley polarization and ferro-valleytricity in 2D materials with in-plane spin magnetization, wherein the physics correlates to non-collinear magnetism in triangular lattice. Our model analysis provides comprehensive ingredients that allow for ferro-valleytricity with in-plane spin magnetization, revealing that mirror symmetry favors remarkable valley polarization and time-reversal-mirror joint symmetry should be excluded.

View Article and Find Full Text PDF

The Tibetan Plateau is home to numerous glaciers that are important for freshwater supply and climate regulation. These glaciers, which are highly sensitive to climatic variations, serve as vital indicators of climate change. Understanding glacier-fed hydrological systems is essential for predicting water availability and formulating climate adaptation strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!