Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fluorescence labeling of cells is a versatile tool used to study cell behavior, which is of significant importance in biomedical sciences. Fluorescent photoconvertible markers based on polymer microcapsules have been recently considered as efficient and perspective ones for long-term tracking of individual cells. However, the dependence of photoconversion conditions on the polymeric capsule structure is still not sufficiently clear. Here, we have studied the structural and spectral properties of fluorescent photoconvertible polymeric microcapsules doped with Rhodamine B and irradiated using a pulsed laser in various regimes, and shown the dependence between the photoconversion degree and laser irradiation intensity. The effect of microcapsule composition on the photoconversion process was studied by monitoring structural changes in the initial and photoconverted microcapsules using X-ray diffraction analysis with synchrotron radiation source, and Fourier transform infrared, Raman and fluorescence spectroscopy. We demonstrated good biocompatibility of free-administered initial and photoconverted microcapsules through long-term monitoring of the RAW 264.7 monocyte/macrophage cells with unchanged viability. These data open new perspectives for using the developed markers as safe and precise cell labels with switchable fluorescent properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp04606k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!