A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongsli56oauvielu51lh9niqsg3dpq1dgv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

3D epigenomics and 3D epigenopathies. | LitMetric

3D epigenomics and 3D epigenopathies.

BMB Rep

Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.

Published: May 2024

Mammalian genomes are intricately compacted to form sophisticated 3-dimensional structures within the tiny nucleus, so called 3D genome folding. Despite their shapes reminiscent of an entangled yarn, the rapid development of molecular and next-generation sequencing technologies (NGS) has revealed that mammalian genomes are highly organized in a hierarchical order that delicately affects transcription activities. An increasing amount of evidence suggests that 3D genome folding is implicated in diseases, giving us a clue on how to identify novel therapeutic approaches. In this review, we will study what 3D genome folding means in epigenetics, what types of 3D genome structures there are, how they are formed, and how the technologies have developed to explore them. We will also discuss the pathological implications of 3D genome folding. Finally, we will discuss how to leverage 3D genome folding and engineering for future studies. [BMB Reports 2024; 57(5): 216-231].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139681PMC
http://dx.doi.org/10.5483/BMBRep.2023-0249DOI Listing

Publication Analysis

Top Keywords

genome folding
20
mammalian genomes
8
will discuss
8
genome
6
folding
5
epigenomics epigenopathies
4
epigenopathies mammalian
4
genomes intricately
4
intricately compacted
4
compacted form
4

Similar Publications

Stretched-exponential protein refolding kinetics, first observed decades ago, were attributed to a nonnative ensemble of structures with parallel, non-interconverting folding pathways. However, the structural origin of the large energy barriers preventing interconversion between these folding pathways is unknown. Here, we combine simulations with limited proteolysis (LiP) and cross-linking (XL) mass spectrometry (MS) to study the protein phosphoglycerate kinase (PGK).

View Article and Find Full Text PDF

Human Leukocyte Antigens (HLA) are immunoreceptors that present peptide antigens at the cell surface to T cells as a primary mechanism of immune surveillance. Malaria, a disease associated with the Plasmodium parasite, claims > 600,000 lives per year globally with most deaths occurring in Africa. Development of efficacious prophylactic vaccines or therapeutic treatments for malaria has been hindered by the lack of a basic understanding of the role of HLA-mediated peptide antigen presentation during Plasmodium infection.

View Article and Find Full Text PDF

Conformational ensembles for protein structure prediction.

Sci Rep

March 2025

Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518057, China.

Acquisition of conformational ensembles for a protein is a challenging task, which is actually involving to the solution for protein folding problem and the study of intrinsically disordered protein. Despite AlphaFold with artificial intelligence acquired unprecedented accuracy to predict structures, its result is limited to a single state of conformation and it cannot provide multiple conformations to display protein intrinsic disorder. To overcome the barrier, a FiveFold approach was developed with a single sequence method.

View Article and Find Full Text PDF

Advancing Recombinant Protein Expression in Komagataella phaffii: Opportunities and Challenges.

FEMS Yeast Res

March 2025

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

Komagataella phaffii has gained recognition as a versatile platform for recombinant protein production, with applications covering biopharmaceuticals, industrial enzymes, food additives, etc. Its advantages include high-level protein expression, moderate post-translational modifications, high-density cultivation, and cost-effective methanol utilization. Nevertheless, it still faces challenges for the improvement of production efficiency and extension of applicability.

View Article and Find Full Text PDF

In situ global mapping of protein perturbations via protein abundance and conformation analysis.

Anal Chim Acta

May 2025

State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Dadao, Nanjing, 211198, China. Electronic address:

Background: Traditional studies of protein responses to external stimuli primarily focus on changes in protein abundance, often overlooking the critical role of protein conformational alterations. To address this gap, we developed Protein Abundance and Conformation Analysis (PACA), an integrative method that quantifies both protein abundance and conformational changes. PACA combines conventional quantitative proteomics for abundance measurements with Target Response Accessibility Profiling (TRAP), a technique that captures conformational changes in situ by applying reductive dimethylation to label accessible lysine residues in living cells before lysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!