Controlling the Magnetic Responsiveness of Cellulose Nanofiber Particles Embedded with Iron Oxide Nanoparticles.

ACS Appl Bio Mater

Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan.

Published: May 2024

2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber (TOCN) particles, an innovative biobased material derived from wood biomass, have garnered significant interest, particularly in the biomedical field, for their distinctive properties as biocompatible particle adsorbents. However, their microscopic size complicates their separation in liquid media, thereby impeding their application in various domains. In this study, superparamagnetic magnetite nanoparticles (NPs), specifically iron oxide FeO NPs with an average size of 15 nm, were used to enhance the collection efficiency of TOCN-FeO composite particles synthesized through spray drying. These composite particles exhibited a remarkable ζ-potential (approximately -50 mV), indicating their high stability in water, as well as impressive magnetization properties (up to 47 emu/g), and rapid magnetic responsiveness within 60 s in water (3 wt % FeO to TOCN, 1 T magnet). Furthermore, the influence of FeO NP concentrations on the measurement of the speed of magnetic separation was quantitatively discussed. Additionally, the binding affinity of the synthesized particles for proteins was assessed on a streptavidin-biotin binding system, offering crucial insights into their binding capabilities with specific proteins and underscoring their significant potential as functionalized biomedical materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c00213DOI Listing

Publication Analysis

Top Keywords

magnetic responsiveness
8
cellulose nanofiber
8
iron oxide
8
composite particles
8
particles
5
controlling magnetic
4
responsiveness cellulose
4
nanofiber particles
4
particles embedded
4
embedded iron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!