Background: Organophosphorus pesticides (OP) have been associated with various human health conditions. Animal experiments and in-vitro models suggested that OP may also affect the gut microbiota. We examined associations between ambient chronic exposure to OP and gut microbial changes in humans.
Methods: We recruited 190 participants from a community-based epidemiologic study of Parkinson's disease living in a region known for heavy agricultural pesticide use in California. Of these, 61% of participants had Parkinson's disease and their mean age was 72 years. Microbiome and predicted metagenome data were generated by 16S rRNA gene sequencing of fecal samples. Ambient long-term OP exposures were assessed using pesticide application records combined with residential addresses in a geographic information system. We examined gut microbiome differences due to OP exposures, specifically differences in microbial diversity based on the Shannon index and Bray-Curtis dissimilarities, and differential taxa abundance and predicted Metacyc pathway expression relying on regression models and adjusting for potential confounders.
Results: OP exposure was not associated with alpha or beta diversity of the gut microbiome. However, the predicted metagenome was sparser and less evenly expressed among those highly exposed to OP (p = 0.04). Additionally, we found that the abundance of two bacterial families, 22 genera, and the predicted expression of 34 Metacyc pathways were associated with long-term OP exposure. These pathways included perturbed processes related to cellular respiration, increased biosynthesis and degradation of compounds related to bacterial wall structure, increased biosynthesis of RNA/DNA precursors, and decreased synthesis of Vitamin B1 and B6.
Conclusion: In support of previous animal studies and in-vitro findings, our results suggest that ambient chronic OP pesticide exposure alters gut microbiome composition and its predicted metabolism in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11020204 | PMC |
http://dx.doi.org/10.1186/s12940-024-01078-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!