Efficient techniques for separating target cells from undiluted blood are necessary for various diagnostic and research applications. This paper presents acoustic focusing in dense media containing iodixanol to purify peripheral blood mononuclear cells (PBMCs) from whole blood in a label-free and flow-through format. If the blood is laminated or mixed with iodixanol solutions while passing through the resonant microchannel, all the components (fluids and cells) rearrange according to their acoustic impedances. Red blood cells (RBCs) have higher effective acoustic impedance than PBMCs. Therefore, they relocate to the pressure node despite the dense medium, while PBMCs stay near the channel walls due to their negative contrast factor relative to their surrounding medium. By modifying the medium and thus tuning the contrast factor of the cells, we enriched PBMCs relative to RBCs by a factor of 3600 to 11,000 and with a separation efficiency of 85%. That level of RBC depletion is higher than most other microfluidic methods and similar to that of density gradient centrifugation. The current acoustophoretic chip runs up to 20 µl/min undiluted whole blood and can be integrated with downstream analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021555 | PMC |
http://dx.doi.org/10.1038/s41598-024-59156-7 | DOI Listing |
Clin Chem Lab Med
January 2025
Deparment of Laboratory Medicine, 16268 La Paz University Hospital, Madrid, Spain.
Objectives: Cardiac biomarkers are useful for the diagnostic and prognostic assessment of myocardial injury (MI) and heart failure. By measuring specific proteins released into the bloodstream during heart stress or damage, these biomarkers help clinicians detect the presence and extent of heart injury and tailor appropriate treatment plans. This study aims to provide robust biological variation (BV) data for cardiac biomarkers in athletes, specifically focusing on those applied to detect or exclude MI, such as myoglobin, creatine kinase-myocardial band (CK-MB) and cardiac troponins (cTn), and those related to heart failure and cardiac dysfunction, brain natriuretic peptide (BNP) and N-terminal brain natriuretic pro-peptide (NT-proBNP).
View Article and Find Full Text PDFInt J Immunogenet
January 2025
Department of Clinical Haematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India.
High degree of variability in human leukocyte antigens (HLAs) system restricts availability of histocompatible HLA-matched-related donors, thus increasing reliance on worldwide bone marrow registries network. Nevertheless, due to limited coverage/accessibility/affordability of some ethnicities in these registries, haploidentical haematopoietic stem cell transplantation (HSCT) emerged as an alternative option, though with allorecognition-mediated graft versus host disease (GvHD) (>40% cases). A dimorphism [-21 methionine (M) or threonine (T)] in HLA-B leader peptide (exon 1) which differentially influences its HLA-E binding, plausibly regulates natural killer cell functionality, affecting GvHD vulnerability and clinically in practice for donor selection.
View Article and Find Full Text PDFHLA
January 2025
School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina.
The novel HLA-C*06:44:02 allele differs from HLA-C*06:44:01 by one synonymous nucleotide substitution in exon 2.
View Article and Find Full Text PDFHLA
January 2025
Department of Transfusion Research, Wuhan Blood Center, Wuhan, China.
HLA-B*15:245:02Q differs from HLA-B*15:01:01:01 by two nonsynonymous nucleotides exchanges in exon 3.
View Article and Find Full Text PDFHLA
January 2025
Department of Transfusion, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
HLA-B*37:114 has a single non-synonymous change from HLA-B*37:01:01:01 changing residue 163 from Threonine to Lysine'.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!