Ion exchange is a powerful method to access metastable materials with advanced functionalities for energy storage applications. However, high concentrations and unfavourably large excesses of lithium are always used for synthesizing lithium cathodes from parent sodium material, and the reaction pathways remain elusive. Here, using layered oxides as model materials, we demonstrate that vacancy level and its corresponding lithium preference are critical in determining the accessible and inaccessible ion exchange pathways. Taking advantage of the strong lithium preference at the right vacancy level, we establish predictive compositional and structural evolution at extremely dilute and low excess lithium based on the phase equilibrium between LiCoO and NaCoO. Such phase separation behaviour is general in both surface reaction-limited and diffusion-limited exchange conditions and is accomplished with the charge redistribution on transition metals. Guided by this understanding, we demonstrate the synthesis of NaCoO from the parent LiCoO and the synthesis of LiCoO from NaCoO at 1-1,000 Li/Na (molar ratio) with an electrochemical assisted ion exchange method by mitigating the kinetic barriers. Our study opens new opportunities for ion exchange in predictive synthesis and separation applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-024-01862-8 | DOI Listing |
Plants (Basel)
January 2025
Department of Agrarian and Exact, Universidade Estadual da Paraíba, Catolé do Rocha 58884-000, PB, Brazil.
Freshwater depletion becomes a significant challenge as the population grows and food demand rises. We evaluated the responses of lettuce cultivars () under saline stress in photosynthetic responses, production, and ion homeostasis. We used a randomized block design in a 3 × 5 factorial scheme with five replications-the first factor: three cultivars of curly lettuce: SVR 2005, Simpson, and Grand Rapids.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.
Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.
View Article and Find Full Text PDFNutrients
January 2025
Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy.
Background: The metabolism of plasma amino acid (AA) in children with autism spectrum disorder (ASD) has been extensively investigated, yielding inconclusive results. This study aims to characterize the metabolic alterations in AA profiles among early-diagnosed children with ASD and compare the findings with those from non-ASD children.
Methods: We analyzed plasma AA profiles, measured by ion exchange chromatography, from 1242 ASD children (median age = 4 years; 81% male).
Sci Rep
January 2025
Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, B2N 5E3, Nova Scotia, Canada.
Tea plantations commonly receive substantial quantities of nitrogen (N) fertilizer, with potential for considerable N loss to occur. This study assessed N retention in acidic tea plantation soil and examined how different biochar application rates and fertilizer combinations affect N dynamics, highlighting the importance of innovative technologies to monitor and enhance N supply management. This research adopted a modified 2-week aerobic incubation and ion-exchange membrane (IEM) techniques to evaluate the soil N supply in tea plantations following early-summer top-dressing as influenced by various biochar rates and fertilizer combinations.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Sciences, Hebei University, Baoding 071002, Hebei, China.
Screening carbonyl reductases with the ability to catalyze the reduction of complex carbonyl compounds is of great significance for the biosynthesis of -tolvaptan(-TVP). In this study, the target carbonyl reductase in the crude enzyme extract of rabbit liver was separated, purified, and identified by ammonium sulfate precipitation, gel-filtration chromatography, ion exchange chromatography, affinity chromatography, and protein mass spectrometry. With the rabbit liver genome as the template, the gene encoding the carbonyl reductase was amplified by PCR and the recombinant strain was successfully constructed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!