Scalable and Highly Porous Membrane Adsorbents for Direct Air Capture of CO.

ACS Appl Mater Interfaces

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.

Published: May 2024

Direct air capture (DAC) of CO is a carbon-negative technology to mitigate carbon emissions, and it requires low-cost sorbents with high CO sorption capacity that can be easily manufactured on a large scale. In this work, we develop highly porous membrane adsorbents comprising branched polyethylenimine (PEI) impregnated in low-cost, porous Solupor supports. The effect of the PEI molecular mass and loading on the physical properties of the adsorbents is evaluated, including porosity, degradation temperature, glass transition temperature, and CO permeance. CO capture from simulated air containing 400 ppm of CO in these sorbents is thoroughly investigated as a function of temperature and relative humidity (RH). Polymer dynamics was examined using differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS), showing that CO sorption is limited by its diffusion in these PEI-based sorbents. A membrane adsorbent containing 48 mass% PEI (800 Da) with a porosity of 72% exhibits a CO sorption capacity of 1.2 mmol/g at 25 °C and RH of 30%, comparable to the state-of-the-art adsorbents. Multicycles of sorption and desorption were performed to determine their regenerability, stability, and potential for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c02873DOI Listing

Publication Analysis

Top Keywords

highly porous
8
porous membrane
8
membrane adsorbents
8
direct air
8
air capture
8
sorption capacity
8
scalable highly
4
adsorbents
4
adsorbents direct
4
capture direct
4

Similar Publications

Novel technique to produce porous thermochromic VO nanoparticle films using gas aggregation source.

Sci Rep

January 2025

Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.

Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.

View Article and Find Full Text PDF

Currently, the development of high-performance adsorbents for the removal of nanoplastics in complex aquatic environments is challenging. In this study, a functionalized polyethyleneimine-phosphorylated microcrystalline cellulose/MoS (PEI-PMCC/MoS) hybrid aerogel was prepared and applied to remove carboxyl-modified polystyrene (PS-COOH) nanoplastics from the aqueous solution. Benefiting from the introduced functional groups and the expanded lamellar structure in MoS nanosheets as well as the highly porous 3D structure of the aerogel, PEI-PMCC/MoS demonstrated high efficiency in PS-COOH nanoplastics removal, achieving a 402.

View Article and Find Full Text PDF

Synthesis, characterization and antimicrobial application of carrageenan/TiO composite materials.

Int J Biol Macromol

January 2025

Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O Box 259, Dodoma, Tanzania. Electronic address:

In this study, a highly crystalline anatase/rutile mixed phase carrageenan/TiO nanocomposite with a larger surface area was synthesized via the sol-gel process and calcined at 450 °C and 650 °C. The synthesized composite materials were characterized by FTIR, XRD, SEM, EDX, TEM, BET and TGA. FTIR confirms the presence of C-Ti-O bond formation in composite.

View Article and Find Full Text PDF

Additively manufactured drug products, typically produced using small-scale, on-demand batch mode, require rapid and non-destructive quantification methods. A tunable modular design (TMD) approach combining porous polymeric freeze-dried modules and an additive manufacturing method, inkjet printing, was proposed in an earlier study to fabricate accurate and patient-tailored doses of an antidepressant citalopram hydrobromide. This approach addresses the unmet medical needs associated with antidepressant tapering.

View Article and Find Full Text PDF

We have executed a cost-effective approach to produce a high-performance multifunctional human-machine interface (HMI) humidity sensor. The designed sensors were ecofriendly, flexible, and highly sensitive to variability in relative humidity (%RH) in the surroundings. In this study, we have introduced a humidity sensor by using carbon paper (as both a substrate and sensing material) and a silver (Ag) conductive ink pen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!