Eutrophication has led to the widespread occurrence of cyanobacterial blooms. Toxic cyanobacterial blooms with high concentrations of microcystins (MCs) have been identified in the Lalla Takerkoust reservoir in Morocco. The objective of this study was to evaluate the efficiency of the Multi-Soil-Layering (MSL) ecotechnology in removing natural cyanobacterial blooms from the lake. Two MSL pilots were used in rectangular glass tanks (60 × 10 × 70 cm). They consisted of permeable layers (PLs) made of pozzolan and a soil mixture layer (SML) containing local soil, ferrous metal, charcoal and sawdust. The main difference between the two systems was the type of local soil used: sandy soil for MSL1 and clayey soil for MSL2. Both MSL pilots effectively reduced cyanobacterial cell concentrations in the treated water to very low levels (0.09 and 0.001 cells/mL). MSL1 showed a gradual improvement in MC removal from 52 % to 99 %, while MSL2 started higher at 90 % but dropped to 54% before reaching 86%. Both MSL systems significantly reduced organic matter levels (97.2 % for MSL1 and 95.8 % for MSL2). Both MSLs were shown to be effective in removing cyanobacteria, MCs, and organic matter with comparable performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.134281 | DOI Listing |
ISME Commun
January 2025
Department of Microbiology, Universität Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany.
The cyanobacterium causes harmful algal blooms that pose a major threat to human health and ecosystem services, particularly due to the prevalence of the potent hepatotoxin microcystin (MC). With their pronounced EPS layer, colonies also serve as a hub for heterotrophic phycosphere bacteria. Here, we tested the hypothesis that the genotypic plasticity in its ability to produce MC influences the composition and assembly of the phycosphere microbiome.
View Article and Find Full Text PDFJ Paleolimnol
December 2024
Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
Unlabelled: Cyanobacteria are ubiquitous aquatic organisms with a remarkable evolutionary history reaching as far as 1.9 Ga. They play a vital role in ecosystems yet also raise concerns due to their association with harmful algal blooms.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China. Electronic address:
The concomitant prevalence of toxic cyanobacteria blooms and plastic pollution in aquatic ecosystems is emerging as a pressing global water pollution dilemma. While toxic cyanobacteria and microplastics (MPs) can each independently exert significant impacts on aquatic biota, the magnitude and trajectory of the combined interactions remains rudimentary. In this study, we evaluated how MPs influences cyanobacterial stress on keystone grazer Daphnia, focusing on population, individual, biochemical and toxicogenomic signatures.
View Article and Find Full Text PDFEnviron Microbiol Rep
February 2025
Department of Microbiology, University of Helsinki, Helsinki, Finland.
Mycosporine-like amino acids are water-soluble secondary metabolites that protect photosynthetic microorganisms from ultraviolet radiation. Here, we present direct evidence for the production of these compounds in surface scums of cyanobacteria along the Baltic Sea coast. We collected 59 environmental samples from the southern coast of Finland during the summers of 2021 and 2022 and analysed them using high-resolution liquid chromatography-mass spectrometry.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China. Electronic address:
The increasing frequency of cyanobacterial blooms, particularly those induced by Microcystis aeruginosa (M. aeruginosa), poses severe economic, ecological and health challenges due to the production of microcystins (MCs). Environmental parameters such as light and nutrient availability influence MCs production, while the role of dissolved organic matter (DOM) photochemical processes in regulating these remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!