Clostridium butyricum (C. butyricum) represents a new generation of probiotics, which is beneficial because of its good tolerance and ability to produce beneficial metabolites, such as short-chain fatty acids and enzymes; however, its low enzyme activity limits its probiotic efficacy. In this study, a mutant strain, C. butyricum FZM 240 was obtained using carbon ion beam irradiation, which exhibited greatly improved enzyme production and tolerance. The highest filter paper, endoglucanase, and amylase activities produced by C. butyricum FZM 240 were 125.69 U/mL, 225.82 U/ mL, and 252.28 U/mL, which were 2.58, 1.95, and 2.21-fold higher, respectively, than those of the original strain. The survival rate of the strain increased by 11.40 % and 5.60 % after incubation at 90 °C for 5 min and with simulated gastric fluid at pH 2.5 for 2 h, respectively, compared with that of the original strain. Whole-genome resequencing and quantitative real-time PCR(qRT-PCR) analysis showed that the expression of genes related to enzyme synthesis (GE000348, GE001963 and GE003123) and tolerance (GE001114) was significantly up-regulated, while that of genes related to acid metabolism (GE003450) was significantly down-regulated. On this basis, homology modeling and functional prediction of the proteins encoded by the mutated genes were performed. According to the results, the properties related to the efficacy of C. butyricum as a probiotic were significantly enhanced by carbon ion beam irradiation, which is a novel strategy for the application of Clostridium spp. as feed additives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.enzmictec.2024.110447 | DOI Listing |
Dalton Trans
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Silicon-based anode materials experience significant volume changes and low conductivity during the lithiation process, which severely hinders their successful application in lithium-ion batteries. Reducing the size of silicon particles and effectively combining them with carbon-based materials are considered the main strategies to enhance the lithium-ion storage performance of silicon-based anodes. In this study, we employed a "bottom-up" strategy to synthesize Si@C anode materials by cross-linking octa-aminopropyl polyhedral oligomeric silsesquioxane (NH-POSS) with terephthalaldehyde and subsequent high-temperature treatment and low-temperature liquid reduction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.
View Article and Find Full Text PDFChemistry
January 2025
University of Nottingham, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, Jubilee Campus, Triumph Road, NG7 2TU, Nottingham, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The nucleophilic propargylation of azinium ions with a propargylboronate proceeds efficiently under gold(I) catalysis. A range of N-alkylated pyridinium, quinolinium, and pyrazinium ions undergo propargylation with good yields and high regioselectivities to give various functionalized 1,4-dihydropyridines, 1,2-dihydropyridines, 1,4-dihydroquinolines, 1,2-dihydroquinolines, and 4,5-dihydropyrazines. No allenylation side-products are observed.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.
View Article and Find Full Text PDFInt J Dent
January 2025
Department of Conservative Dentistry and Endodontics, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh.
Due to the presence of ion reservoir, saliva may facilitate enamel remineralization and neutralize pH of acidic beverage leads to prevent enamel demineralization. Saliva substitute/artificial saliva has been developed in subsequent years and may differ in physical properties, function, or pH level from 5.0 to 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!